
Fig. 1. Cross-section of a multiconductor microstrip interconnection
comprising n = 4 transmission conductors (TCs) and a reference or
ground conductor (GC). The arc length on the perimeter of each
TC, denoted by s, is explained and used in Section V.

A Computation of the High-Frequency Per-Unit-Length
Resistance Matrix of a Multiconductor Interconnection

Frédéric Broydé and Evelyne Clavelier
Tekcem

Maule, France
e-mail: fredbroyde@tekcem.com, eclavelier@tekcem.com

Abstract — Assuming the applicability of multiconductor
transmission line (MTL) theory, we establish a relationship between
the high-frequency (h.f.) current distribution in a multiconductor
interconnection and the electrostatic charge distribution in a lossless
interconnection without dielectrics. This result is used to obtain the
h.f. per-unit-length resistance matrix at a low computational cost.

I. INTRODUCTION

We consider a uniform multiconductor interconnection having
n transmission conductors (TCs) and a reference conductor

(ground), for instance used for signal transmission in a parallel
link. A possible cross-section of such an (n + 1)-conductor
interconnection is shown in Fig. 1, in the special case of a simple
multiconductor microstrip structure. We want to describe the high-
frequency (h.f.) current distribution in the cross-section of this
“interconnection 1” and to use this result to compute its h.f. per-
unit-length (p.u.l.) resistance matrix. In this paper, h.f. current
distribution refers to the current distribution at frequencies for
which the skin effect (current crowding near the surface of the
conductors), the edge effect (current crowding near edges of the
conductors) and the proximity effect (interaction of the current
distributions in distinct nearby conductors) are fully developed.

In the case of a two-conductor interconnection (n = 1), the
detailed current distribution is usually computed as the solution of
equations involving the longitudinal electric field [1]. However, a
different and older technique, which only applies in the quasi-
TEM approximation, can be used to determine the h.f. current
distribution at a low computational cost. It is based on the fact that
the h.f. current distribution is the product of a constant and the
charge distribution in the corresponding electrostatic problem [2].
In this paper, we carefully generalize this approach to the case
n $ 2. We do not take into account characteristics which might
occur but are not necessarily present, such as inhomogeneous (e.g.
plated) conductors [3, § III.B] or conductor roughness [4, § 5.3].

We define an “interconnection 2” as identical to the
interconnection 1, except that, in the interconnection 2, the
dielectrics are replaced with vacuum and the conductors are
replaced with ideal conductors having the same geometry. In
Section II, we review the propagation in the interconnection 2. In
Sections III and IV, we establish general properties of the current
and charge distributions in the interconnections 1 and 2. In
Sections V and VI, these results are used to derive the h.f. current
distribution and the h.f. p.u.l. resistance matrix of the
interconnection 1. Examples are given in the Sections V and VII.
II. LOSSLESS INTERCONNECTION WITHOUT DIELECTRICS

In the interconnection 2 defined in the introduction, we only
consider the propagation of TEM waves along the z axis, which
takes place at the velocity of light in vacuum, denoted by c0. The
most general frequency domain electric field solution is given by
[5, § 9.1] [6, § 3.1]
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where ω is the radian frequency, EA(x, y) is a transverse electric
field applicable to a wave propagating in the direction of
increasing z, and EB(x, y) is a transverse electric field applicable
to a wave propagating in the direction of decreasing z. The two-
dimensional fields EA(x, y) and EB(x, y) are related to the two-
dimensional gradients of the potential functions ψA(x, y) and
ψB(x, y), by EA(x, y) = !!!!LT ψA(x, y) and EB(x, y) = !!!!LT ψB(x, y),
where LT denotes the transverse part of the vector operator L.  The
magnetic field is given by
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where ez denotes the unit vector of the z axis and η0 is the intrinsic
impedance of free-space. The equations (1) and (2) are direct
consequences of Maxwell’s equations.
ψA(x, y) is the solution of Laplace’s equation LT 

2ψA(x, y) = 0 for
the Dirichlet boundary conditions defined by a column-vector VA
of voltages VA 1,..., VA n between each TC and the ground
conductor (GC); and ψB (x, y) is the solution of Laplace’s equation
LT 

2ψB(x, y) = 0 for the Dirichlet boundary conditions defined by
a column-vector VB of voltages VB 1,..., VB n between each TC and
the GC. The vectors VA and VB are determined by the devices at
the ends of the interconnection.



By (1) we see that E(x, y, z) = !!!!LT ψ(x, y, z) where

(3)ψ ψ ψ
ω ω

x y z x y e x y eA

j
c

z

B

j
c

z
, , , ,b g b g b g= +

− +
0 0

is the solution of Laplace’s equation LT 
2ψ(x, y, z) = 0 for the

Dirichlet boundary conditions defined by the column-vector V(z)
of the voltages between each TC and the GC, given by
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In the interconnection 2, at the boundary of the conductors, the
surface charge density is given by
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where ε0 is the permittivity of vacuum and where n is the unit
vector normal to the boundary drawn from the conductor to
vacuum. The surface current density being axial (i.e. parallel to ez),
the axial component of the surface current density on the surface
of the conductors is given by

(6)j x y zS z= ⋅ ×e n H , ,b g
Using (2), we get
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For a wave propagating in a given direction and α 0{1,..., n}, an

integration of (5) and (7) over the boundary of the TC α in a cross-
section of the interconnection gives 

(8)I z Q z c Q zα α αη ε
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where Iα and Qα are the current in the TC α and the p.u.l. charge
on the TC α, respectively, where the + sign applies to a wave
propagating in the direction of increasing z, and the opposite sign
to the opposite direction. Thus, using the definition of the p.u.l.
capacitance matrix of the interconnection 2, a real matrix of size
n × n denoted by C0, we get

(9)I C Vz c zb g b g= ± 0 0

where the column-vector of the currents in the TCs is denoted by
I(z). By (4) we get
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where ZC = (c0 C0)!!!!1 is the characteristic impedance matrix of the
multiconductor transmission line (MTL).

We could have obtained (4) and (10) using general formulas for
V(z) and I(z) provided by MTL theory [7, § 4.3.2], applied to the
special case of lossless and homogeneous interconnection [7,
§ 4.4.1]. The above derivation has the advantage of showing that
(4) and (10) are exact, direct and straightforward consequences of
Maxwell’s equations applied to TEM waves, and it also provides
(5) and (7) which will be needed later in the paper.
III. SURFACE CURRENT DENSITY

Let us consider a first configuration where, at a given abscissa
z = zG in the interconnection 2, a column-vector of the currents on
the conductors, denoted by I(zG), is observed. On the boundary of
the conductors, according to (7), we may write
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Here, ψG(x, y) is the solution of Laplace’s equation
LT 

2ψG(x, y) = 0 for the Dirichlet boundary conditions defined by
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where we have used (10). Consequently, the surface current
density jS does not depend on the choice of VA and VB and is
uniquely defined by I(zG). Clearly, ψG(x, y) is a linear function of
I(zG), but it is otherwise independent of zG and of frequency.
Consequently, at a given (x, y) on the boundary of the conductors
at z = zG . Using (11) we find that jS is a linear function of I(zG),
which may be represented with the matrix M(x, y) such that

(15)j x y z x y zS G G, , ,b g b g b g= M I
where M(x, y) is frequency-independent and has the dimensions
of m!!!!1. Moreover, we observe that, if I(zG) is a real vector,
ψG(x, y) is a real potential function because, in (14), ZC is a real
matrix. Thus, if I(zG) is a real vector, (11) shows that jS is real, so
that M(x, y) is real.

For the interconnection 1, our reasoning does not apply because
(7) and (10) are not necessarily satisfied. Let us assume that
resistive losses are small, so that the currents essentially flow near
the surface of the conductors and a surface current density jS can
be considered. No general formula can be used in place of (7) and
(10). This is not surprising, since MTL theory is exactly
compatible with Maxwell equations only in the case of an
homogeneous medium surrounding perfect conductors: in the
general case where the dielectrics surrounding the conductors is
not homogeneous, the fundamental mode of propagation is not
exactly TEM [6, § 3.1]. However, in the framework of MTL
theory, at each abscissa z, the effects of I(z), such as the magnetic
field and the resulting jS given by (6), are assumed to be
independent from the effects of V(z), such as the electric field, so
that, for a given I(z), jS is unaffected by the presence of dielectrics.
Thus, we can state the following theorem.
Theorem on the surface current density. At a given abscissa z =
zG of the interconnection 1, for small resistive losses (h.f. current
distribution), the surface current density jS on the boundary of the
conductors is given by (15), where M(x, y) is a real 1 × n matrix
which neither depends on the abscissa nor on the frequency.



Fig. 2. Cross-section of a microstrip interconnection, showing the
origin of the arc length on the perimeter of the TC, denoted by s.

IV. SURFACE CHARGE DENSITY

Let us consider a second configuration where, at an abscissa z =
zH in the interconnection 2, a column-vector of the p.u.l. charge
density on the boundary of the conductors, denoted by Q(zH), is
observed. By charge conservation, we have
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Using (4) and (10), we get
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At z = zH, on the boundary of the conductors, by (5) we have
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Here, ψH(x, y) is the solution of Laplace’s equation
LT 

2ψH(x, y) = 0 for the Dirichlet boundary conditions defined by

(21)V V V Z QA

j
c

z

B

j
c

z

H C He e z c z
H H− +

+ = =
ω ω

0 0
0b g b g

where we have used (17). Thus, the surface charge density ρS is
uniquely defined by V(zH) or equivalently by Q(zH). We see that
ψH(x, y) is a linear function of Q(zH), but it is otherwise
independent of zH and of the frequency. Consequently, at a given
(x, y) on the boundary of the conductors at z = zH, ρS is a linear
function of Q(zH), which may be represented with the frequency-
independent matrix N(x, y) such that

(22)ρ S H Hx y z x y z, , ,b g b g b g= N Q

where N(x, y) has the dimensions of m!!!!1. Additionally, we observe
that, if Q(zH) is a real vector, ψH(x, y) and V(zH) are real by (21)
because ZC is a real matrix. Thus, if Q(zH) is real, (18) shows that
ρS is real, so that N(x, y) is real and describes the electrostatic
charge distribution. We have proved a second theorem.
Theorem on the surface charge density. At a given abscissa z =
zH of the interconnection 2, the surface charge density ρS on the
boundary of the conductors is given by (22), where N(x, y) is a real
1 × n matrix which neither depends on the abscissa nor on the
frequency, N(x, y) describing the electrostatic charge distribution.
Fig. 3. For the interconnection shown in Fig. 2, surface
current density on the TC (arbitrary unit) versus s when a
current is injected in the TC.

V. HIGH-FREQUENCY CURRENT DISTRIBUTION 

We now observe that ψG(x, y) and ψH(x, y) are the solutions of
Laplace’s equation for the Dirichlet boundary conditions defined
by ZC I(zG) and c0 ZC Q(zH), respectively. Thus, for I(zG) =
c0 Q(zH) we have ψG(x, y) = ψH(x, y), so that by (11) and (18) we
have ρS /ε0 = η0 jS. Consequently,

N(x, y) = M(x, y) (23)
Thus, we obtain the following theorem.

Theorem on the connection of charge and current densities.
For an MTL with small resistive losses (h.f. current distribution),
at a given abscissa z, for a given I(z), the surface current density
jS at the surface of the conductors is the product of an arbitrary
velocity vD and the surface charge density at the surface of the
conductors in a configuration where all dielectrics are replaced by
vacuum and where Q(z) = I(z)/vD.

Let us now see how this theorem can be used to easily
determine the h.f. current distribution. The MTL model of the
interconnection includes the h.f. p.u.l. external inductance matrix
of the interconnection 1, denoted by L0. We show in the Appendix
that this matrix is given by L0 = µ0 ε0 C0

!!!!1, where µ0 is the
permeability of vacuum and C0 was defined in Section II. In order
to assess C0, the perimeter of each TC is usually divided in small
strips. Let us use A to denote the set of the indices of the strips
which form the boundaries of all TCs. The set A may be
partitioned into mutually exclusive subsets A1, ... An , where for
any integer j such that 1 # j # n,  the subset Aj contains the indices
of the strips of the TC number j. At the final stage of the
computation of C0 by the method of moment using pulse
expansion and point matching [7, § 3.3], a capacitance matrix C0
is computed, an entry C0 α β of C0 being the p.u.l. charge of the strip
number α when the voltage between the center of the strip number
β and ground is 1 V, the voltage between the center of each other
strip and ground being 0 V. The entry C0 i j of C0 is given by
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At this point, an estimate of N(x, y) = M(x, y) is available, since,



Fig. 4. For the interconnection shown in Fig. 1, surface current
density (arbitrary unit) measured on TC 1, versus s, when a
current is injected in the TC 1 (a), TC 2 (b) or TC 3 (c).

at any point (X, Y) on the strip number α we have 
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where we use wα to denote the width of the strip α, where tA
denotes the transpose of A and where ej denotes the column-vector
having n entries, said entries being zero except the j-th entry which
is equal to 1.

Let us for instance consider the interconnection shown in Fig.
2, with t = w = h = 50 µm. On the TC, the normalized arc length
along the perimeter of the cross section, denoted by s, increases
clockwise, from the point s = 0, shown in Fig. 2, to s = 1. The Fig.
3 shows the h.f. current distributions on the TC when a current is
injected into it, computed using (25) and 84 matching points. The
edge effect, which causes current crowding near edges, is visible
in Fig. 2, at s = 0, s = 0.25, s = 0.5, s = 0.75, and s = 1. The
proximity effect increases the current on the bottom of the TC.

Let us now consider the interconnection shown in Fig. 1, with
t = w1 = w2 = h = d1 = d2 = 50 µm. On a given TC, the normalized
arc length is defined as in Fig. 2. The Fig. 4 and Fig. 5 show the
h.f. current distributions on the TCs when a current is injected on
a single TC, the other TCs being open circuited, computed using
(25) and 336 matching points. The edge effect and the proximity
effect are plain in Fig. 4 and Fig. 5. We see that the proximity
effect causes eddy currents to be induced in all non-excited
conductors. This phenomenon will contribute to the h.f. resistive
losses. The Fig. 6 shows the h.f. current distributions in the GC
when a current is injected on a single TC. These distributions are
governed by the proximity effect. We observe that the different
return current paths do not exactly have the same distribution,
because of the interactions between the TCs. Also, the return
current paths overlap, this effect creating a resistive coupling
proportional to the common h.f. resistance.

VI. HIGH-FREQUENCY P.U.L. RESISTANCE MATRIX

Let us assume that we inject the currents of the column-vector
I into the TCs. Let us use iS (α, I) to denote the current flowing in
Fig. 5. For the interconnection shown in Fig. 1, surface current
density (arbitrary unit) versus s when a current is injected in the
TC 1: measured on TC 2 (a), TC 3 (b) and TC 4 (c).

the strip α. For any j0{1,..., n}, we have
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where [x]j is the j-th entry of the vector x. At high frequencies,
according to the theorem on the surface current density, we may
define a real matrix QV having n columns such that, for any I, the
current flowing in the strip α is given by
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where k is an arbitrary non-zero constant. Using (26), we get
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Fig. 6. Surface current density (arbitrary unit) on the
reference conductor (GC), versus the abscissa in the
cross-section in mm, when a current is injected in the
TC 1 (a), TC 2 (b), TC 3 (c) or TC 4 (d).



where the QV α j are the entries of QV. Let us assume that the
resistivity and the skin depth are the same in all TCs and denoted
by ρTC and δTC, respectively. At sufficiently high frequencies, the
thickness and width of each TC are each much greater than δTC. In
this case, the surface current density being homogeneous over each
strip, the p.u.l. power dissipated in the TCs is
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The h.f. p.u.l. resistance matrix of the TCs, denoted by RHFTC , is
defined by PTC =  I* RHFTC I, where I* denotes the hermitian
adjoint of I. Using (28) and (29), we may easily show that
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where we refer to KTC as the matrix of the equivalent inverse
widths of the TCs, the entries of KTC being given by 
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At this stage, the theorem on the connection of charge and
current densities can be used to obtain QV, since it tells us that we
may define QV α i as the p.u.l. electrostatic charge on the strip α
when the p.u.l charge of the TC number i is 1, the p.u.l. charge on
each other TC being zero. In other words, we can use
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A similar reasoning can be used to obtain the h.f. p.u.l.
resistance matrix of the GC, denoted by RHFGC and defined by
PGC =  I* RHFGC I, where PGC is the p.u.l. power dissipated in the
GC. Using ρGC and δGC to denote the resistivity and the skin depth
of the GC, respectively, we find
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where we refer to KGC as the matrix of the equivalent inverse
widths of the GC, the entries of KGC being given by 
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where ξ is an arc length on the boundary of the GC and where
n · Ei(ξ) is the electrostatic field component normal to the surface
of the GC when the p.u.l. charge of each strip is given by (32), the
integration path C extending over the boundary of the GC.

Finally, the h.f. resistance matrix of the interconnection, denoted
by RHF, is given by
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Fig. 7. Cross-section of a multiconductor stripline interconnection.

The conductors being reciprocal and passive, KTC and KGC are
frequency-independent real positive semidefinite matrices [8,
§ 7.1]. Thus, any diagonal entry of KTC or KGC is non-negative.

VII. EXAMPLES

As a first example, we consider the microstrip interconnection
used in Section V and depicted in Fig. 2, with t = w = h = 50 µm
and a dielectric of relative permittivity εr = 12.9. This case was
studied and discussed in [3, § III.D]. Using 84 matching points, we
find that the p.u.l. external inductance, the p.u.l. capacitance, and
KTC and KGC given by (31), (32) and (34) are

L0 = 317.5 nH/m       C = 236.3 pF/m
(36)

KTC = 6176 m!!!!1        KGC = 2392 m!!!!1 

As a second example, we consider the multiconductor
microstrip interconnection used in Section V and shown in Fig. 1,
for which t = w1 = w2 = h = d1 = d2 = 50 µm, again with εr = 12.9.
Using 336 matching points, we find that the p.u.l. external
inductance matrix and the p.u.l. capacitance matrix are
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KTC and KGC given by (31), (32) and (34) are:
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As a third example, we consider the multiconductor stripline
interconnection depicted in Fig. 7, with the same parameter values
and computation technique as the second example. We find

(41)L0

229 5 47 6 10 0 21
47 6 224 4 46 6 10 0
10 0 46 6 224 4 47 6
21 10 0 47 6 229 5
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As expected, each diagonal entries of C given by (42) is greater
than the corresponding entries given by (38) and each diagonal
entry of L0, KTC and KGC given by (41), (43) and (44) is less than
the corresponding entry given by (37), (39) or (41). More
importantly, this third example shows that a non-diagonal entry of
KTC is not always positive. We have checked that, for the second
and third examples, KTC and KGC are positive semidefinite.

We have computed KTC and KGC in many different
configurations. We always found that KTC is strictly diagonally
dominant [8, § 6.1.9], and that KGC is nonnegative [8, § 8.1].

VIII. CONCLUSION

We have used the assumptions of TEM propagation in the
interconnection 2 and of the applicability of the MTL model to the
interconnection 1 to obtain some properties of the current and
charge distributions, which include a relationship between the h.f.
current distribution in the interconnection 1 and the electrostatic
charge distribution in the interconnection 2. This relationship can
be used to easily determine a h.f. current distribution which takes
into account the crowding of currents at the edges of each
conductor (edge effect), and the interactions between the currents
flowing in different conductors (proximity effect).

In the case where the TCs have the same homogeneous
resistivity, it is convenient to compute the frequency-independent
KTC and KGC to obtain the frequency-dependent RHFTC and RHFGC
at any frequency where the h.f. approximation applies. We have
provided formula for evaluating KTC and KGC at a low
computational cost after the computation of L0.
This work may be used to define an analytical and physically
reasonable model for the p.u.l. internal impedance matrix at any
frequency where the quasi-TEM assumption applies [9].

APPENDIX: A NOTE ON MTL THEORY

Using (4) and (10), we get

d
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ω0 0 0
1

0
2

(45)
and
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zI C V V C V= −
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I
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− +

0 0 0
0 0

ω ω

ω
(46)

Assuming only TEM propagation, we have proved the
telegrapher’s equations for the interconnection 2, given by

(47)

d
dz

j

d
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j

V L I

I C V
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ω
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0

0

where L0 is the p.u.l. inductance matrix of the interconnection 2,
given by

(48)L C C0
0
2 0

1
0 0 0

11= =− −

c
µ ε

L0 is also the h.f. p.u.l. external inductance matrix of the
interconnection 1. Most authors use (48) without proof [7, § 2.4]
[10, § 6.2.6.1]. We are aware of only two proofs [11, § IV.3] [12,
Appendix], but they are much more complex than the present one.
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