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Abstract—This paper introduces a two-stage model for assessing
crosstalk in balanced interconnections used for differential signal
transmission, such as multipair cables. The first stage considers the
interconnection as uniform and uses a change of variables based on
the symmetries inherent to balancing, for the definition of a set of
parameters to be measured. The second stage of the model takes
into account the nonuniformity related to the fluctuations of the
characteristics of the interconnection, using a first order pertur-
bation expansion and a probabilistic approach. This model is com-
patible with published results on crosstalk in multipair cables.

Index Terms—Balanced interconnection, crosstalk, interconnec-
tion, multipair cable, signal integrity, transmission.

I. INTRODUCTION

ence conductor. It does not rely on a balanced interconnection
and provides more channels per conductor than balanced inter-
connections used with differential signaling. However, both ap-
proaches implement modal transmission, and they would ideally
provide uncoupled transmission channels.

As a consequence, the residual crosstalk showing up in real
implementations of both approaches could be computed with a
common theoretical framework. Instead of such a general and
abstract development, this paper presents a correct derivation of
crosstalk in balanced interconnections, in the case of multipair
cable. Surprisingly, published material on the computation of
crosstalk in multipair cables relies on the ad hoc “two-circuit
model” outlined in Section II, which is not compatible with the
accepted multiconductor transmission line (MTL) theory, and
EARLY telegraph and telephone transmission took place on
open-wire lines, whose conductors were individually sup-

ported above ground by means of insulators on poles. At the
beginning of the 20th century, engineers knew that the principal
method of reducing crosstalk in such electrical interconnections
is the use of a separate circuit for each signal to be transmitted,
the circuits being substantially perfectly balanced to each other
by means of very frequent transposition of the conductors of
each circuit [1]. In transposition, the two conductors of each cir-
cuit exchange position at intervals along the line so as to balance
out unwanted voltages and currents induced by adjacent circuits.

Even though transposed open-wire lines are not used anymore
for signal transmission, transposition is a current technique used
to obtain high-speed balanced interconnections, for instance in
twisted-pair cables and in special trace structures in printed cir-
cuit boards [2]. A balanced interconnection is a propagation
medium with pairs, in which appropriate symmetries are used
to obtain the cancellation of unwanted couplings between the
pairs. Balanced interconnections are generally obtained using
transposition, but not necessarily: for instance the star quad (for
which ) discussed later does not implement transposition.
When balanced interconnections are used for differential trans-
mission with suitable line transmitters, line receivers and termi-
nations, crosstalk and echo will be low.

The authors have recently [3], [4] shown that crosstalk and
echo can also be eliminated in uniform multiconductor inter-
connections if one uses modal transmission and matched termi-
nations. This ZXtalk method provides uncoupled transmis-
sion channels, using transmission conductors and one refer-
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cannot be generalized to different transmission schemes. Our
derivation, detailed in Section III to Section VIII, will be based
on the MTL theory. It will therefore be more accurate than the
two-circuit model and also adaptable to the ZXtalk method.

A major cause of the residual crosstalk in modal transmission
schemes being small unwanted departures from the ideal prop-
erties of the propagation medium distributed along the length of
the medium, a statistical approach will be used. The advantage
of considering multipair cables in this paper is that it will be
possible to compare our theory with abundant published exper-
imental data, in Section IX.

II. TWO-CIRCUIT MODEL AND MTL THEORY

Crosstalk in multipair cables has mostly been studied with the
following theoretical approach: two pairs are considered and the
description of crosstalk is limited to electric and magnetic cou-
plings between a disturbing circuit and a disturbed circuit [5, §
8.4 to § 8.8], [6, § 11.3], as shown in Fig. 1. This model uses only
two coupling parameters distributed over the length of the cable:
a mutual inductance and an equivalent capacitance . This
two-circuit model has been used to compute the crosstalk cou-
pling loss at each end of the cable in three important cases: 1)
the case of an electrical and/or a magnetic unbalance when the
cable is short compared to wavelength; 2) the case of a nonuni-
form electrically long cable, using the assumption that the rms
voltage at one end results from a summation of power caused
by uncorrelated unbalance contributions along the cable; 3) the
case of a uniform electrically long cable for which the voltage at
one end results from a uniform unbalance along the cable. Case
3) is regarded as irrelevant in practical circuits, and the telecom
industry has relied up to now on design rules based on Case 2),
and on purely statistical models [7].

Independently, a standard method for computing crosstalk
based on the MTL theory [8, § 6.2] has been the subject of many
0 © 2007 IEEE
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Fig. 1. Basic two-circuit model uses only the distributed parameters M and
C to compute the near-end crosstalk voltage v and the far-end crosstalk
voltage v .

papers in the last 30 years. As is well known, MTL models ap-
propriate for field coupling predictions (i.e., derivation of the
emission of radiated fields or of the pick-up of external fields)
must take into account the common-mode current on the cable,
and therefore include an additional reference conductor [8, §
6.1.4 and § 7.1] running parallel to the cable. For instance, if the
cable is inserted inside a metallic duct, it should be used as a ref-
erence conductor. For instance, if the cable is installed close to
a flat metallic structure (ground plane), this structure should be
the reference conductor. The two-circuit model can be viewed
as a special case of the MTL theory implementing ad hoc initial
assumptions to extract only 4 independent variables (two dif-
ferential-mode currents and two differential-mode voltages) out
of the MTL theory (which uses independent variables in the
case of an unshielded cable with pairs or variables if
the cable is shielded).

III. SYMMETRY TRANSFORMS

A. Natural Parameters

A cable contains twisted pairs (with ), eventually
surrounded by an overall screen. Adhering to the vocabulary of
the telecom industry, we will refer to a unshielded twisted-pair
(UTP) cable or to a shielded twisted-pair (STP) cable, according
to the case. The multipair cable is regarded as a multiconductor
cable having conductors, with in the case of a UTP
cable or with in the case of a STP cable. Let us
number the conductors of the cable in the following way:

The number attributed to each conductor will be used as index
for the current flowing on the corresponding conductor (the pos-
itive direction is the one of current flowing into the cable at the
near-end) and for the voltage of this conductor with respect to
a reference conductor having any geometry. We will use to
denote the vector of these natural currents and to
denote the vector of these natural voltages .

The standard cable parameters used in the MTL theory are the
p.u.l. inductance, resistance, capacitance and conductance ma-
trices (p.u.l. standing for “per-unit-length”), noted , , and

, respectively. We will call them the natural matrices of the
problem. The four symmetric natural matrices depend on
the parameters of the reference conductor, i.e., its shape, size,
position and distance to the cable. The MTL theory states that,
at given radian frequency and abscissa , all electrical phe-
nomena taking place on the cable are described by the telegra-
pher’s equations

(1)

will be called the natural p.u.l. impedance
matrix and will be called the natural p.u.l. ad-
mittance matrix. As is well known, (1) is easily solved after a
suitable diagonalization of the matrices and [8, § 6.2],
[9]. The eigenvectors so obtained define the propagation modes
and the eigenvalues correspond to the propagation constants.

B. Parameters After the Change of Variables

As will be shown in Section III-C, differential crosstalk volt-
ages of well-balanced cables are very sensitive to small vari-
ations of some elements of the natural matrices, because they
correspond to differences of natural voltages. The direct imple-
mentation of the usual MTL analysis approach is therefore not
satisfactory for such interconnections.

In this paper, we will perform a linear change of variable (or
linear transform) on the natural currents and voltages, in order
to introduce in the MTL theory the convenient differential-mode
currents and differential-mode voltages used in the two-circuit
model, and the common-mode needed for field coupling assess-
ments.

Such a transform must take into account the symmetries of
the cable. It will therefore be called a symmetry transform. We
will use to denote the vector of the symmetry-transformed
currents and to denote the vector of the sym-
metry-transformed voltages . In this paper, these
currents and voltages will be respectively called symmetrical
currents and symmetrical voltages. Our change of variables will
be described with two invertible real matrices and such that

(2)

If we use (1) and (2), we obtain a symmetry-transformed te-
legrapher’s equation as

(3)

where , , and are the symmetry-transformed p.u.l.
inductance, resistance, capacitance and conductance matrices,
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respectively. These matrices are defined as

(4)

If thesymmetrytransformischoseninsuchawaythat the trans-
pose of satisfies , then the matrices , ,
and are symmetric. This property is of course very desirable,
because it reduces the number of parameters to be measured. If

is real, this property also implies that the symmetry transform
can be realized with a lossless linear network [10], [11, § III]. We
will note the symmetry-transformed p.u.l.
impedance matrix and the symmetry-trans-
formed p.u.l. admittance matrix of the cable.

C. Example

For a STP cable with two pairs, we can consider the symmetry
transform defined by

(5)

for which . We see that, with this symmetry trans-
form, and are the differential mode voltages, and

are the differential mode currents, is the common mode
voltage of the internal conductors with respect to the shield,
is the common mode current on internal conductors, is the
common mode voltage of the cable with respect to the reference
conductor, and is the common mode current on the cable.
The authors have designed and built an apparatus for the direct
measurement of the symmetry-transformed matrices for such a
symmetry transform [10], [11]. This instrument is intended to
be connected between the cable and the two ports of a network
analyzer. In order to illustrate the advantages of a direct mea-
surement of the symmetry-transformed matrices, let us consider
measurement results obtained at 1 MHz on a two-pair STP cable
held at about 10 cm of a ground plane.

Using a conventional measurement technique [8, § 6.4 and §
6.5], the first four elements of the diagonal of the matrix are
found to be close to 1.3 H/m, the 21 other elements ranging
from 0.9 H/m to 1 H/m. Using our instrument for a direct
measurement of and , we found almost diagonal ma-
trices, the diagonal elements for the differential mode being re-
spectively close to 0.59 H/m and 40 pF/m. The nondiagonal
elements responsible for crosstalk could also be measured, their
values being typically 60 dB below the diagonal elements. Using
(4) and (5), we can check that such nondiagonal elements of
typically correspond to variations of the order of only 0,005 dB
of the elements of . If we consider that such an accuracy is not
achievable in practice, we can infer that direct measurements
of the elements of cannot lead to acceptable estimates of the
nondiagonal elements of using (4) and (5).
For well-balanced multipair cables, the nominal propagation
parameters for the pairs are determined by the first diagonal
elements of the symmetry-transformed matrices defined by
(4), and the nondiagonal elements of these matrices produce
crosstalk. Consequently, for such cables, the direct measure-
ment of the symmetry-transformed matrices is more effective
for assessing crosstalk than conventional measurement tech-
niques.

IV. PARAMETERS FOR THE UTP CABLE

A. Ideally Balanced UTP Cable

We may now define a perfectly balanced UTP cable with
pairs as a cable for which the conductors of the same pair have
the same p.u.l. impedances and admittances with respect to the
reference conductor, and for which the excitation of any pair in
differential mode induces no voltage and injects no current in
any other conductor. If is any one of the natural matrices ,

, or , we see that the elements of satisfy

(6)

Some averaging of the properties of a cable over its length
being legitimate for low enough frequencies, it is clear that a
suitable twisting of the pairs (i.e., transposition) may produce
a cable almost perfectly balanced. We will also define a super-
balanced UTP cable as a balanced cable in which any pair can
be exchanged with any other pair without changing any natural
matrix. For a super-balanced UTP cable there are three values

, and such that

(7)

This corresponds to what Carson and Hoyt call “the ideal tele-
phone transmission system” [12, eq. (19)]. For instance, with
a proper numbering of the conductors, a perfect so-called star
quad made of 4 wires twisted together will be super-balanced.
However, the property (7) is much stronger than the property
(6). We note that, for an ideal cable made of 4 twisted pairs,
themselves twisted together in star quad configuration, we might
(after averaging) get matrices in the form

(8)
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where , , and are four constants. This matrix
has more symmetry than a perfectly balanced UTP cable, but
less than a super-balanced one (with a super-balanced cable, we
would have ).

B. Change of Variables for the UTP Cable

In this paper, we will consider the following symmetry trans-
form for UTP cables:

(9)

The symmetrical voltages (respectively, cur-
rents ) are called the differential mode voltages
(respectively, currents). The symmetrical voltage (respec-
tively, current ) is the common-mode voltage (respectively,
current) of the cable. Considering (2), we see that the matrices

and are defined by (9). We can easily establish that any
two different rows of the matrices and are orthogonal and
that they have the three following properties:

(10)

We note that thanks to the first property of (10), the ma-
trices , , and are symmetric. The change of vari-
able has been defined in such a way that, if the UTP cable is
super-balanced, then the matrices , , and are di-
agonal. Hence, the matrices and

are also diagonal and the symmetrical currents and
voltages correspond to the modes for propagation (see the end
of Section III-A above and the Section VI).

If the cable is only a perfectly balanced UTP cable, one can
prove that the transformed matrix of a natural matrix can
be divided in four square sub-matrices of order according to

(11)

where is the square null matrix of order and where
is a diagonal matrix of order , with

(12)

with if or if , or with if
or if . The matrix is a symmetric square matrix of
order .

It is interesting to see how the transformed matrices look like
in the case of a symmetry ranging between that of the perfectly
balanced cable and of the super-balanced cable. In the case of a
cable having the symmetry given by (8) for its natural matrices,
if or if , we get

(13)

and (14) shown at the bottom of the page. If or if
, we get
(14)
(15)

and (16) shown at the bottom of the next page. Of course, the
matrices given by (14) and (16) become diagonal if

, because the cable is super-balanced.
V. PARAMETERS FOR THE STP CABLE

A. Ideally Balanced STP Cable

If we were only investigating the crosstalk between the con-
ductors of a STP cable, we could consider a problem without
an external reference conductor, the cable screen being used as
reference conductor. We would use the natural matrices of this
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(16)
problem: a p.u.l. inductance matrix , a p.u.l. resistance matrix
, a p.u.l. capacitance matrix and a p.u.l. conductance ma-

trix . These “internal” natural matrices are square matrices
of order and they are defined using the numbering defined in
the Section III for the conductors 1 to . The STP cable will
be perfectly balanced if these natural matrices have the property
(6). The STP cable will be super-balanced if these natural ma-
trices have the property (7).

If we now consider an external conductor and define it as
the new reference conductor, we can use the definitions of the
Section III for the natural matrices , , and of this
problem. They are square matrices of order . For
the cable screen, we can also define a p.u.l inductance , a
p.u.l. resistance , a p.u.l. capacitance and a p.u.l. con-
ductance with respect to the reference conductor. Let us call
“ideal magnetic screen” a conductive screen for which any cur-
rent flowing on the screen and returning to the generator through
the reference conductor produces no magnetic field and no elec-
tric field inside the cable screen. If we assume that the cable
screen is an ideal magnetic screen, for and , we
can show that

...
. . .

...
... (17)

where the are the elements of the internal matrix . We
note that if the screen has a nonnegligible resistivity at DC, the
resistance matrix does not comply with (17), because a current
flowing on the screen produces an electric field inside the screen.
If we wish to consider that a screen is an ideal magnetic screen
at low frequency, we might have to assume that its resistivity is
negligible. We see that at frequencies so large that the thickness
of an homogenous screen becomes much larger than its skin
depth (in this case the p.u.l. transfer impedances
of the internal conductors become very small), the screen might
be regarded as an ideal magnetic screen.

Let us call “ideal electric screen” a screen which does not
allow any capacitive or conductive coupling between the con-
ductors of the pairs and the reference conductor. If we assume
that the cable screen is an ideal electric screen, for and

, we can show that

...
. . .

...
...

(18)
where the are the elements of the internal matrix . We
know that cable screens (for instance those without significant
apertures) can closely approximate ideal electric screens.

B. Change of Variables for the STP Cable

The symmetry transform used in this paper for STP cables
is defined by (9) for the first symmetrical voltages and
currents and by

(19)

for the last two symmetrical voltages and currents. This and
(2) define the matrices and . Note that the example (5)
corresponds to the case . The symmetrical voltages

(respectively, currents ) are called the
differential mode voltages (respectively, currents). The sym-
metrical voltage (respectively, current ) can be called
the common-mode voltage (respectively, current) of internal
conductors. The symmetrical voltage (respectively,
current ) is the common-mode voltage (respectively,
current) of the cable. We can easily establish the two following
properties

(20)

However, unlike the change of variable introduced for the
UTP cable, we cannot say that any two different rows of the
matrices and are necessarily orthogonal. Also, the matrix

is not diagonal, in general. We note that thanks to the
first property of (20), the matrices , , and are
symmetric. The change of variable has been defined in such a
way that, if the STP cable is super-balanced and if its screen
is an ideal electric screen and an ideal magnetic screen, then
the matrices , , and are diagonal. Hence, the ma-
trices and are also
diagonal and the symmetrical currents and voltages correspond
to the modes for propagation.

If the cable is only a perfectly balanced STP cable with an
ideal magnetic and ideal electric screen, one can show that the
symmetry-transformed matrix of a natural matrix can be
written

...
. . .

...
... (21)
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where the are the elements of the symmetry-transformed
matrix of the internal natural matrix defined as if the
internal conductor were a UTP cable, and where is equal
to or or or according to the case. This property
is very powerful, since a single element of depend on the
parameters of the reference conductor.

It should be noted that Kaden [13, chap. E] has established
analytic formulas for the computation of the symmetry-trans-
formed matrices , and of a super-balanced star
quad (these matrices are diagonal, and their diagonal elements
correspond to the value computed by Kaden for the symmetric
circuits, the phantom circuit and the asymmetric circuit).

VI. CROSSTALK ON A UNIFORM MULTIPAIR CABLE

A uniform cable is a cable in which the symmetry-trans-
formed matrices , , and always take on the same
value along the cable length. However, for many balanced
cables of interest, this is true with a sufficient accuracy only
after some averaging over the cable length (typically over a
large number of twists of the twisted pairs).

Once the transformed matrices have been measured, they
could be used to compute the natural matrices using (4). The
usual computation of crosstalk [8, § 6.2], [9] starting with the
diagonalization of and would then directly provide the
natural voltages and currents, as said at the Section III-A.

Noting that (3) is formally identical to (1), we see that the
computation of couplings may alternatively be performed using
a diagonalization of and . More precisely, we in-
troduce two regular matrices and such that

(22)

where

(23)

is the diagonal matrix of order of the eigenvalues. These eigen-
values are the squares of the propagation constants for waves
traveling toward the far-end (they have a positive imaginary
part). For the symmetry transforms defined at the Section IV-B
and Section V-B, the matrices and are symmetric. There-
fore, taking the transpose of the first line of (22) produces the
second line for the particular choice of

(24)

This shows that and can be diagonalized into the
same matrix . The matrices and define a “modal trans-
form” for the symmetrical currents and voltages and the results
of this transform are referred to as modal currents and modal
voltages. If we use to denote the vector of the modal cur-
rents and to denote the vector of the modal
voltages , we have

(25)
We note that (22) implies that the column-vectors of (re-
spect. ) are linearly independent eigenvectors of (re-
spect. ). As a result, and are not uniquely defined
by (22)–(24) alone because of: first the arbitrary ordering of the
eigenvalues in (23), and second the arbitrary choice of eigen-
vector(s) corresponding to a given eigenvalue. However, for a
perfectly balanced UTP cable and for a perfectly balanced STP
cable with an ideal electric and ideal magnetic screen, (11), (12)
and (21) show that the first rows and columns of the sym-
metry-transformed matrices , , and are already
diagonalized. Therefore, the first rows and columns of the ma-
trices and of such a cable could be chosen in such a way
that they are the first rows and columns of the identity matrix,
and this choice is compatible with (24). If the cable is super-bal-
anced, and are already diagonalized and and

could be the identity matrix of order . In the case of a well
balanced UTP or STP cable, the matrices and could be
chosen in such a way that they approach the first rows and
columns of the identity matrix. As a result, the differential volt-
ages and currents on each pair would nearly correspond to prop-
agation modes.

VII. CROSSTALK ON A NONUNIFORM MULTIPAIR CABLE

The manufacturer of a balanced cable tries to produce an
almost perfectly balanced cable, but the parameters of a real
cable fluctuate around this ideal case. If the fluctuations were not
present, the cable would be perfectly balanced, the differential
voltages and currents would correspond to propagation modes
as said above, and if the cable had balanced terminations, no
crosstalk would degrade the signals transmitted on any pair.

In practice, some crosstalk occurs, because fluctuations are
unavoidable. In this section, we will consider that the fluctua-
tions of the cable parameters are known over the length of a
section of cable. If we consider the nonuniform transformed te-
legrapher’s equation, that is to say (3) where the parameters of
the cable are -dependent, we can derive a set of two indepen-
dent equations

(26)

It is then possible to split the symmetry-transformed matrix
(respectively, ) into an homogenous (i.e., uniform) part
(respectively, ) independent of , and a ( -dependent)

fluctuation part (respectively, ). If we show the depen-
dence on the abscissa , we obtain

(27)

We will not assume that and have a zero average,
but they are assumed to be small corrections. From now on, we
will focus on the solution of the first line of (26) to compute ,
because all results for can then be derived using a duality
transform. can be split according to

(28)
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where is a solution computed for and .
Following the derivation of [14] for the scalar case, we find that
the equation for is

(29)

with

(30)

and

(31)

We are looking for solutions of (29)–(31) for a section of
cable of length . We will assume that the section of cable is
terminated at both ends by a network having an impedance ma-
trix equal to the characteristic impedance matrix [8], [9] of the
cable without the fluctuations, and that a suitable source at the
near-end excites a single propagation mode of the uniform
cable (i.e., a mode computed without fluctuations).

Multiplying (29) on the left by the matrix obtained by ap-
plying the theory of the Section VI to the homogeneous problem
defined by the matrices and , and keeping only first
order terms, we get

(32)
where

(33)

and

(34)

where , where and where
is given by (23) applied to the homogeneous problem. We see
that the left-hand side of (32) contains no -dependent coeffi-
cient. Using its Green’s function

(35)

and noting that, because of our choice of termination, the section
of cable behaves as if it was infinite in both directions, with
and vanishing for and , we get

(36)

In order to obtain the value of to the first order of the
method of perturbation [14], [15, § 9.1], we only need to neglect
the term in the right-hand side of (36). Since, according
to our assumptions, is a vector having its element of the
th row equal to and all other elements equal

to 0, we get for the th row of at the near-end

(37)

and for the th row of at the far-end

(38)

where we have noted the element of the row of a vector
, and with

(39)

and

(40)

where is the element of the row and of the column
of a matrix . In the case of a lossless cable the propagation
constants and are imaginary and proportional to , and

and are therefore real and frequency-independent.
It is instructive to compare these results for the multipair cable

according to a first-order perturbation theory, to the ones ob-
tained by Wenger et al. [14] for a single transmission channel
using a second-order perturbation theory. A single transmission
channel corresponding to the case , we see that the echo
term (37) is identical to the single order formula (32) of [14],
and that the channel term (38) looks different from the value 0
found by Wenger et al. to the first order. However, the discrep-
ancy disappears if we consider that these authors assumed a zero
mean for the fluctuations. We note that they found a nonvan-
ishing channel term with the second order perturbation theory.

For , (37) provides the near-end crosstalk (NEXT) cou-
pling factor, and (38) the far-end crosstalk (FEXT) coupling
factor, in the special case that we have considered for the termi-
nations. These crosstalk terms are computed between two prop-
agation modes of the uniform cable. In the case where the prop-
agation constants and of two modes are equal, according
to (38) the FEXT voltage is proportional to the length of the
section, multiplied by the average over the section of cable of
the function defined by (40). It is interesting to consider the spe-
cial case of an hypothetical cable made of perfectly conducting
wires in a radially and axially homogenous and lossless dielec-
tric. For such a cable, the product is a constant, and all
the propagation constants are equal to where is the ve-
locity of e.m. waves in the dielectric. In this case, at the
far-end is equal to zero, because the function defined by (40)
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is equal to zero. Even if these assumptions are not true for real
cables, we expect the function defined by (40) for the FEXT to
have a smaller modulus than the function defined by (39) for the
NEXT.

VIII. STATISTICAL APPROACH

A. Definitions and Analytical Results

In the Section VII we have investigated what we could derive
from the knowledge of the fluctuations and of the
cable parameters. In this section we will consider the more re-
alistic case where these fluctuations are only known from some
statistical properties. We can first compute the expectation of
the coupling factors over many experiments using different sam-
ples of the same cable having the same length . Assuming sta-
tionary processes for the fluctuation of the cable parameters, we
get

(41)

and

(42)

The left-hand side of (41) and (42) are expectations of pha-
sors. Assuming the fluctuations to be ergodic for the expectation
[16, ch. 12], the average of the right-hand side of (41) and (42)
can also be regarded as taken over a length of cable much larger
than the distance necessary to obtain independent fluctuations.
If , the singularity in (42) should be removed using the
limit of the right-hand side when tends to zero. In this
case (41) and (42) are very similar to the classical results for the
voltages induced at the ends of a transmission line made of two
weakly coupled identical conductors above a ground plane, ter-
minated with “matched” impedances to ground [17, equ. (23)].
We note that if the fluctuations and have a zero av-
erage, the expectations of the coupling factors (41) and (42) are
equal to zero.

We can also compute the expectation of the square of the
modulus of the coupling factors (thereafter called ESMCF),
with the assumptions of the Section VII for the terminations.
At the near-end, we get

(43)

The average inside the double integral is an autocorrelation
and it should be viewed as a function of only,
because we assume the processes to be stationary and ergodic
to the second order [16, ch. 12]. It therefore seems appropriate to
use the variable and in the integral. For this change
of variables, the new intervals of integration become for

, and for . Noting the real part and the
imaginary part of a propagation constant , we finally get the
NEXT ESMCF

(44)
with the autocorrelation for the NEXT defined as

(45)

and and being positive, with the window function for the
NEXT defined as

if
for

else

(46)

In a similar way, the FEXT ESMCF can be derived as

(47)

with the autocorrelation for the FEXT defined as

(48)

and the window function for the FEXT defined as

if

if
if

(49)

Four remarks can be made on these formula.
1) The integrations over can of course be replaced by inte-

grations on .
2) With a suitable modification of the integrands, the integrals

over can also be replaced with integrals on the interval
, using the fact that the value of an autocorrelation at

is the conjugate of its value at .
3) The autocorrelations defined by (45) and (48) do not de-

pend on the length of the section, but they are frequency-
dependent through the ratios and appearing in
(39) and (40). In the frequency range where the cable is
not very lossy, and will only slightly depend on
frequency.

4) The window functions defined by (46) and (49) depend on
the length of the section and on the frequency through
the attenuation constants and .
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We observe that the above theory, unlike the one presented
in [14] for a single transmission channel, does not assume a
short range for the coherence of the fluctuations of the cable
parameters.

B. Meaning of Expectations in the Statistical Approach

In the sequel, we assume that and are chosen in
such a way that the first rows and columns of the matrices
and are the first rows and columns of the identity matrix
(see the end of Section VI). For and ranging from 1 to ,

, and will be defined as the transfer functions
between a differential-mode voltage at the near-end of the pair

and a differential-mode crosstalk voltage on the pair , at the
near-end and at the far-end, respectively (as shown in Fig. 1).

The expectations of the square of the modulus of the transfer
functions and (thereafter called ESMTF) are equal to
the corresponding ESMCF. They are frequency-dependent ex-
pectations, and can therefore be considered as ensemble aver-
ages of frequency-domain measurements of the square of the
modulus NEXT and FEXT transfer functions over different re-
alizations of the random variable, i.e., different samples of a sec-
tion of cable of length . Consequently, if a sufficient number
of realizations is considered, the maximum values of the mod-
ulus of the NEXT and FEXT transfer functions are expected to
be a few dB larger than the NEXT and FEXT ESMTF (at each
frequency).

The expectation of the square of the noise voltage produced
by a resistor at a given time happens to be directly measur-
able: the rms voltage across the resistor is a good estimate of
this expectation, because the ensemble average can be replaced
with a time average when the process is stationary and ergodic.
We of course want to know if a similar phenomenon takes place
for the NEXT and FEXT ESMTF. For investigating this ques-
tion, we need a definition: we will say that the autocorrelations

and have a short coherence length if and
become very small when is larger than a coher-

ence length , and if is much smaller than , , ,
and . In the case of a short coherence length, and
behave in the integrals of (44) and (47) as a Dirac function
times a frequency-dependent constant, which will be noted
for the NEXT and for the FEXT.

In the special case where the autocorrelations have short co-
herence length and losses are very small (i.e., is much smaller
than and ), we find

(50)

(51)

These equations imply that averaging of the square of the
modulus of the transfer functions takes place over the length

. Consequently, in this special case, the ensemble average can
be replaced with an average over the length of the cable, and
the NEXT and FEXT ESMTF for a length of cable such
that can be measured directly, with a single
experiment.
IX. COMPATIBILITY WITH KNOWN EXPERIMENTAL RESULTS

A. Assumptions and Derivation

We have derived from the MTL theory a computation of
crosstalk caused by fluctuations of the parameters of a balanced
cable. We now want to check if our results are compatible with
some published data on crosstalk in balanced cables.

If we consider cables for the telephone loop used at a high
enough frequency (for instance above 100 kHz), we might as-
sume the following.

a) Only the differential mode currents and voltages are
used for signal transmission (assuming that phantom cir-
cuits [18, § 3.5.7] are not used), and the cable being well
balanced, the almost uncoupled differential mode volt-
ages (and currents) correspond to propagation modes.

b) The impedance matrix of the termination at each cable end
is equal to the characteristic impedance matrix.

c) The propagation constants are equal, so that we may write
.

d) The autocorrelations and have a short coher-
ence length.

Let us compute the NEXT ESMTF. In practice we may here
consider [14], [18, § 3.2.12] that

(52)

where is a frequency-independent constant. We therefore get

(53)

For a long line (in the present case, “long” means that
corresponds to a significant transmission loss), the exponential
term in (53) becomes small, and using (44), we get

(54)

If we now consider the FEXT ESMTF predicted by (47),
using the above assumptions, we get

(55)

We note that (54), (55) are different from (50)–(51). Conse-
quently, performing ensemble averages is necessary to experi-
mentally obtain the results given by (54) and (55).

B. Comparison With Known Results

Three kinds of experimental data and empirical models
are available for cables used in the telephone loop: data on
individual pair-to-pair NEXT and FEXT couplings, data on
the power-sum NEXT and FEXT and data on worst case
pair-to-pair NEXT and FEXT couplings. Pair-to-pair couplings
vary in a complex manner with frequency, and these variations
are different for each pair-to-pair combination. Power-sum
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quantities are formed from the sum of the pair-to-pair coupling
powers of the other pairs in a binder group to a given pair [19].
The power summing process smoothes coupling variations
in a given cable, in such a way that simple models provide a
good description of the experimental data. Simple models are
also available for the worst case NEXT loss and the
worst case FEXT loss due to one pair-to-pair coupling.
They roughly correspond to the envelope of many individual
pair-to-pair couplings [20, Figs. 4 and 5], and they may be
compared to (54) and (55), as explained in Section VIII-B
above. Such models are

(56)

(57)

where is the frequency, is the loop length and where
and are constants determined by measurements. These
models may be applied to cables used in North America and
Europe [7], [18, § 3.5.5], [21, Figs. 2 and 3], [22] in spite of the
difference in their structure, but they are not very accurate.

The NEXT ESMTF given by (54) is independent from the
line length, and increases with frequency at a rate close to 15
dB/decade if we assume that is frequency-independent, in
line with the third remark following (49). This agrees with (56).
The product of the FEXT ESMTF by the factor is
the inverse of the FEXT signal-to-crosstalk ratio. This product,
given by (55) is increasing with the line length at a rate of 10
dB/decade, and with frequency at a rate of 20 dB/decade if
we assume that is frequency-independent, in line with the
third remark following (49). This agrees with (57).

The agreement between (54), (55) and (56)–(57) has been ob-
tained using several assumptions which would need to be inves-
tigated. For instance, it seems likely that manufacturing process
and storage conditions or mechanical stress may introduce pe-
riodical imperfections which would invalidate the hypothesis of
a short coherence length.

X. CONCLUSION

We have defined linear changes of variables for the voltages
and currents, which cause differential-mode currents and dif-
ferential-mode voltages to appear in the MTL theory. After this
change of variables, a good balance of the cable corresponds to a
small value for nondiagonal term of the symmetry-transformed
matrices. Another benefit of using our symmetrical voltages and
currents is that a connection to the reference conductor is not
necessary for measuring them, except and . Consequently,
we expect that the characteristics of the reference conductor
have little influence on the elements of the symmetry-trans-
formed matrices, except the elements of their last row and last
column. We have proved this only when (21) is applicable. This
question needs to be explored further.

The random departure from the ideally balanced case has
been treated with a statistical approach applied to the MTL
theory. As far as we know, this approach is new. Of course, the
known limitations of the MTL theory apply, but they are much
less limiting than the assumptions of the two-circuit model.

In Section IX, we have shown that our adaptation of the MTL
theory is compatible with rough rules of thumb concerning the
telephone loop, stating that the worst case NEXT loss or FEXT
signal to crosstalk ratio decrease with dB/decade of line length
or frequency, being equal to 0, 10, 15 or 20, according to
the case. This result is not the purpose of this paper, since the
two-circuit model already provides such a coarse agreement be-
tween theory and experience (at the cost of unjustified initial
assumptions, though). The benefits of our MTL theory-based
approach are as follows.

• All results are derived from the parameters of the cable, for
instance and could be computed if the statistical
properties of the fluctuations and are known.

• As shown in Section III, such fluctuations can be directly
measured as symmetry-transformed matrices.

• All conductors of the cable are inherently considered in the
MTL theory.

• The rough results of Section IX have been obtained with
unnecessary assumptions which could be removed to im-
prove the accuracy of predictions and expand their range
of application.

• The statistical approach can clearly be adapted to the
ZXtalk method, since it is also a modal transmission
scheme for which the transmission channels are ideally
uncoupled.

More work is needed to fully develop and validate the
proposed analysis of crosstalk in balanced interconnections
used for differential signal transmission. It seems that different
models and experimental approaches will be necessary to cover
balanced wiring on printed circuit boards (for frequencies up to

10 GHz), 2-pair and 4-pair cables used in local area networks
(for frequencies up to 500 MHz) and multipair cables used in
the telephone loop (for frequencies up to 20 MHz). It should
then be possible to use such analysis for the design of better
links, which could implement optimized interfaces or crosstalk
cancellation schemes, or new designs of propagation medium.
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