
Fig. 1. Cross-section of a multiconductor microstrip interconnection
having n = 4 transmission conductors (TCs) and a reference
conductor (GC). The arc length on the perimeter of each TC,
denoted by s, is explained and used in Section V.
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Abstract — Based on multiconductor transmission line (MTL)
theory, we determine the relationship between the high-frequency
(h.f.) current distribution in a multiconductor interconnection and the
electrostatic charge distribution in a lossless interconnection without
dielectrics. This result is used to compute the h.f. per-unit-length
resistance matrix of the interconnection.

I. INTRODUCTION

We consider a uniform multiconductor interconnection having
n transmission conductors (TCs) and a reference conductor also
referred to as ground conductor (GC), for instance used for signal

transmission in a parallel link. The cross-section of such an
(n + 1)-conductor interconnection is shown in Fig. 1, in the special
case of a simple multiconductor microstrip structure. We want to
describe the high-frequency (h.f.) current distribution in the cross-
section of this “interconnection 1” and to use this result to
compute its h.f. per-unit-length (p.u.l.) resistance matrix.

In the case of a two-conductor interconnection (for which
n = 1), the detailed current distribution is usually computed as the
solution of equations involving the longitudinal electric field [1].
In this paper, we consider a different approach which only applies
to the h.f. current distribution and is based on the quasi-TEM
approximation. However, our approach is easily implemented,
even in the case n $ 2. We define an “interconnection 2” as
identical to the interconnection 1, except that, in the
interconnection 2, the dielectrics are replaced with vacuum and the
conductors are replaced with ideal conductors having the same
geometry. Section II states some results of electromagnetic theory
and multiconductor transmission line (MTL) theory, applicable to
the interconnection 2. In Sections III and IV, we establish general
properties of the current and charge distributions in the
interconnections 1 and 2. In Sections V and VI, these results are
used to derive the h.f. current distribution and the h.f. p.u.l.
resistance matrix of the interconnection 1.

II. LOSSLESS INTERCONNECTION WITHOUT DIELECTRICS

In the interconnection 2, we only consider the propagation of
TEM waves along the z axis, which takes place at the velocity of
light in vacuum, denoted by c0. The most general frequency
domain electric field solution is given by [2, § 9.1] [3, § 3.1]
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where ω is the radian frequency, EA (x, y) is a transverse electric
field applicable to a wave propagating in the direction of
increasing z, and EB (x, y) is a transverse electric field applicable
to a wave propagating in the direction of decreasing z. The two-
dimensional fields EA (x, y) and EB (x, y) are related to the two-
dimensional gradients of the potential functions ψA (x, y) and
ψB (x, y), by EA (x, y) = !!!!LT ψA (x, y) and EB (x, y) = !!!!LT ψB (x, y),
where LT denotes the transverse part of the vector operator L.  The
magnetic field is given by
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where ez denotes the unit vector of the z axis and η0 is the intrinsic
impedance of free-space. The equations (1) and (2) are direct
consequences of Maxwell’s equations.

According to MTL theory, for any interconnection, the column-
vector of the voltages of the TCs with respect to the GC, denoted
by V(z), and the column-vector of the currents on the TCs, denoted
by I(z), are given by [4, § 4.3.2] [5]
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where T is the transition matrix from modal currents to natural
currents, Γ is the diagonal matrix of the propagation constants, ZC
is the characteristic impedance matrix of the MTL and where IA
and IB are column-vectors of currents determined by the
configurations at the ends of the interconnection. For the
interconnection 2, Γ = (ω/c0) 1n, where 1n denotes the identity
matrix of size n × n, ZC is real and we may choose T = 1n [4,
§ 4.4.1]. Thus, we may write



(5)V V Vz e eA

j
c

z

B

j
c

zb g = +
− +ω ω

0 0

(6)I Z V Vz e eC A

j
c

z

B

j
c

zb g = −
F
HG

I
KJ

−
− +

1 0 0

ω ω

where VA and VB are column-vectors of voltages determined by
the configurations at the ends of the interconnection. Clearly,
ψA (x, y) is the solution of Laplace’s equation LT 

2ψA (x, y) = 0 for
the Dirichlet boundary conditions defined by VA , while ψB (x, y)
is the solution of Laplace’s equation LT 

2ψB (x, y) = 0 for the
Dirichlet boundary conditions defined by VB.

III. SURFACE CURRENT DENSITY

In the interconnection 2, the surface current density being axial
(i.e. parallel to ez), the axial component of the surface current
density on the surface of the conductors is given by

(7)j x y zS z= ⋅ ×e n H , ,b g
where n is the unit vector normal to the boundary drawn from the
conductor to vacuum. Using (2), we get
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Let us consider a first configuration where, at a given abscissa

z = zG, a column-vector of the currents on the conductors, denoted
by I(zG), is observed. On the boundary of the conductors,
according to (8), we may write
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Here, ψG (x, y) is the solution of Laplace’s equation
LT 

2ψG (x, y) = 0 for the Dirichlet boundary conditions defined by
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where we have used (6). Consequently, the surface current density
jS does not depend on the choice of VA and VB and is uniquely
defined by I(zG). Clearly, ψG (x, y) is a linear function of I(zG), but
it is otherwise independent of zG and of frequency. Consequently,
at a given (x, y) on the boundary of the conductors at z = zG, using
(9), we find that jS is a linear function of I(zG), which may be
represented with the matrix M(x, y) such that

(13)j x y z x y zS G G, , ,b g b g b g= M I
where M(x, y) is frequency-independent and has the dimensions
of m!!!!1. Moreover, we observe that, if I(zG) is a real vector,
ψG (x, y) is a real potential function because, in (12), ZC is a real
matrix. Thus, if I(zG) is a real vector, (9) shows that jS is real, so
that M(x, y) is real.

For the interconnection 1, our reasoning does not apply because
(2) and (6) need not be satisfied. Let us assume that resistive losses
are small, so that the currents mainly flow close to the surface of
the conductors and a surface current density jS can be considered.
No general formula can be used in place of (8) since MTL theory
is exactly compatible with Maxwell equations only in the case of
an homogeneous medium surrounding perfect conductors.
However, in the framework of MTL theory, at each abscissa z, the
effects of I(z), such as the magnetic field and the resulting jS given
by (7), are assumed to be independent from the effects of V(z),
such as the electric field, so that jS is unaffected by the presence of
dielectrics. Thus, we can state the following theorem.
Theorem on the surface current density. At a given abscissa z =
zG of the interconnection 1, for small resistive losses (h.f. current
distribution), the surface current density jS on the boundary of the
conductors is given by (13), where M(x, y) is a real 1 × n matrix
which neither depends on the abscissa nor on the frequency.

IV. SURFACE CHARGE DENSITY

In the interconnection 2, at the boundary of the conductors, the
surface charge density is given by
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where ε0 is the permittivity of vacuum. Let us consider a second
configuration where, at an abscissa z = zH, a column-vector of the
p.u.l. charge density on the boundary of the conductors, denoted
by Q(zH), is observed. By charge conservation, we have
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Using (5) and (6), we get
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At z = zH, on the boundary of the conductors, according to (14),
we may write

(17)ρ ε ε ψS H T H= ⋅ = − ⋅∇0 0n E n
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Here, ψH (x, y) is the solution of Laplace’s equation
LT 

2ψH (x, y) = 0 for the Dirichlet boundary conditions defined by
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where we have used (16). Thus, the surface charge density ρS is
uniquely defined by V(zH) or equivalently by Q(zH). We see that



ψH (x, y) is a linear function of Q(zH), but it is otherwise
independent of zH and of the frequency. Consequently, at a given
(x, y) on the boundary of the conductors at z = zH , ρS is a linear
function of Q(zH), which may be represented with the frequency-
independent matrix N(x, y) such that

(21)ρ S H Hx y z x y z, , ,b g b g b g= N Q

where N(x, y) has the dimensions of m!!!!1. Additionally, we observe
that, if Q(zH) is a real vector, ψH (x, y) and V(zH) are real because
ZC is a real matrix. Thus, if Q(zH) is real, (17) shows that ρS is
real, so that N(x, y) is real and describes the electrostatic charge
distribution. We have proved a second theorem.
Theorem on the surface charge density. At a given abscissa z =
zH of the interconnection 2, the surface charge density ρS on the
boundary of the conductors is given by (21), where N(x, y) is a real
1 × n matrix which neither depends on the abscissa nor on the
frequency, N(x, y) describing the electrostatic charge distribution.

V. HIGH-FREQUENCY CURRENT DISTRIBUTION 

We now observe that ψG (x, y) and ψH (x, y) are the solutions of
Laplace’s equation for the Dirichlet boundary conditions defined
by ZC I(zG) and c0 ZC Q(zH), respectively. Thus, for I(zG) =
c0 Q(zH) we have ψG (x, y) = ψH (x, y), so that (9) and (17) show
that ρS /ε0 = η0 jS. Consequently,

N(x, y) = M(x, y) (22)

Thus, we obtain the following theorem.
Theorem on the connection of charge and current densities.
For an MTL with small resistive losses (h.f. current distribution),
at a given abscissa z, for a given I(z), the surface current density
jS at the surface of the conductors is the product of an arbitrary
velocity vD and the surface charge density at the surface of the
conductors in a configuration where all dielectrics are replaced by
vacuum and where Q(z) = I(z)/vD.

Let us now see how this theorem can be used to easily
determine the h.f. current distribution. The MTL model of the
interconnection includes the h.f. p.u.l. external inductance matrix
of the interconnection 1, denoted by L0 and often referred to as the
p.u.l. external inductance matrix. This matrix is given by
L0 = µ0 ε0 C0

!!!!1, where µ0 is the permeability of vacuum and C0 is
the p.u.l. capacitance matrix of the interconnection 2, as shown by
Pipes [6, § IV.3]. In order to assess C0, the perimeter of each TC
is usually divided in small strips. Let us use A to denote the set of
the indices of the strips which form the boundaries of all TCs. The
set A may be partitioned into mutually exclusive subsets A1, ... An,
where for any integer j such that 1 # j # n,  the subset Aj contains
the indices of the strips of the TC number j. At the final stage of
the computation of C0 by the method of moment using pulse
expansion and point matching [4, § 3.3], a capacitance matrix C0
is computed, an entry C0 α β of C0 being the p.u.l. charge of the strip
number α when the voltage between the center of the strip number
β and ground is 1 V, the voltage between the center of each other
Fig. 2. Surface current density (arbitrary unit) measured on
TC 1, versus s, when a current is injected in the TC 1 (a), TC
2 (b) or TC 3 (c).

strip and ground being 0 V. The entry C0 i j of C0 is given by
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At this point, an estimate of N(x, y) = M(x, y) is available, since,
at any point (X, Y) on the strip number α we have 
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where we use wα to denote the width of the strip α, where tA
denotes the transpose of A and where ej denotes the column-vector
having n entries, said entries being zero except the j-th entry which
is equal to 1. Let us for instance consider the interconnection
shown in Fig. 1, with t = w1 = w2 = 50 µm and h = d1 = d2 =
50 µm. On a given TC, the normalized arc length along the
perimeter of the cross section increases clockwise, from the point
s = 0, shown in Fig. 1, to s = 1. The Fig. 2 shows the current
distribution on the TCs when a current is injected on a single TC,
computed using (24) and 336 matching points. Current crowding
is visible near edges. The proximity effect is also plain. Thus, eddy
currents are induced in all non-excited conductors, and this
phenomenon will contribute to the h.f. resistive losses.

VI. HIGH-FREQUENCY P.U.L. RESISTANCE MATRIX

Let us assume that we inject the currents of the column-vector
I into the TCs. Let us use iS (α, I) to denote the current flowing in
the strip α. For any j, we have
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where [x]j is the j-th entry of the vector x. At high frequencies,
according to the theorem on the surface current density, we may
define a real matrix QV having n columns such that, for any I, the
current flowing in the strip α is given by

(26)i kS Vα α, I Q Ib g =
where k is an arbitrary non-zero constant. Using (25), we get
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where the QV α j are the entries of QV. Let us assume that the
resistivity and the skin depth are the same in all TCs and denoted
by ρTC and δTC, respectively. At sufficiently high frequencies, the
thickness and width of each TC are each much greater than δTC.
The surface current density being homogeneous over each strip,
the p.u.l. power dissipated in the TCs is
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The h.f. p.u.l. resistance matrix of the TCs, denoted by RHFTC, is
defined by PTC = I* RHFTC I, where I* denotes the hermitian
adjoint of I. Using (27) and (28), we may easily show that
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where we refer to KTC as the matrix of the equivalent inverse
widths of the TCs, the entries of KTC being given by 
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At this stage, the theorem on the connection of charge and
current densities can be used to obtain QV, since it tells us that we
may define QV α i as the p.u.l. electrostatic charge on the strip α
when the p.u.l charge of the TC number i is 1, the p.u.l. charge on
each other TC being zero. In other words, we can use
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A similar reasoning can be used to obtain the h.f. p.u.l.
resistance matrix of the GC, denoted by RHFGC, defined by PGC =
I* RHFGC I, where PGC is the p.u.l. power dissipated in the GC.
Using ρGC and δGC to denote the resistivity and the skin depth of
the GC, respectively, we find
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where we refer to KGC as the matrix of the equivalent inverse
widths of the GC, the entries of KGC being given by 
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where ξ is an arc length on the boundary of the GC and where
Ei(ξ) is the electrostatic field component normal to the surface of
the GC when the p.u.l. charge of each strip is given by (31), the
integration path C extending over the boundary of the GC.
Finally, the h.f. resistance matrix of the interconnection, denoted
by RHF, is given by
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The conductors being reciprocal and passive, KTC and KGC are
frequency-independent real positive semidefinite matrices [7,
§ 7.1]. Thus, any diagonal entry of KTC or KGC is non-negative.
As an example, for the multiconductor microstrip interconnection
considered in Section V, using 336 matching points,KTC and KGC
given by (30), (31) and (33) are:
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and
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We have computed KTC and KGC in many different
configurations. Note that a non-diagonal entry of KTC is not
always positive. We always found that KTC is strictly diagonally
dominant [7, § 6.1.9], and that KGC is nonnegative [7, § 8.1].

VII. CONCLUSION

We have determined general properties of the h.f. current
distribution in a multiconductor interconnection, in particular its
connection with the electrostatic charge distribution in the
interconnection when the dielectrics are removed. These properties
can be used to assess RHF based on an approximation which takes
into account the crowding of currents at the edges of a conductor
(edge effect), and the influence of other conductors (proximity
effect). This approach does not require a large computational effort
after the computation of L0. In the case where the TCs have the
same homogeneous resistivity, it is convenient to use the
frequency-independent KTC and KGC to obtain the frequency-
dependent RHFTC and RHFGC as a function of frequency.
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