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Abstract
A type of pseudo-differential link uses a floating termination

circuit connected to an interconnection comprising a return
conductor wider than the transmission conductors. For n channels,
the link is designed using a per-unit-length (p.u.l.) impedance
matrix and a p.u.l admittance matrix, both of size n × n.  The paper
establishes the relationship between this model and an alternative
model which uses a p.u.l. impedance matrix and a p.u.l admittance
matrix of size (n+1)×(n+1). In the process, we define two vectors
which may be used to assess external crosstalk.

I. Introduction
A type of pseudo-differential link (PDL) providing n $ 2

channels uses a multiconductor interconnection having n
transmission conductors (TCs) and a wide return conductor
distinct from the reference conductor (ground) [1] [2]. In the
intended mode of operation of the PDL, the electric and magnetic
fields of the signals are mainly confined between the TCs and the
return conductor, so that the return current caused by signal
propagation flows mainly in the return conductor. This is for
instance obtained if one of the two interconnection-ground
structures shown in Fig. 1 is used with a floating termination
circuit connected to the TCs and to the return conductor. This
configuration, known as the ZXnoise method, is intended to
provide a reduced echo and an enhanced protection against
external crosstalk (external crosstalk is the crosstalk between one
or more channels of the PDL and other circuits).

If the return conductor behaves as an ideal electromagnetic
screen, only the TCs and the return conductor need to be taken into
account to model propagation in the interconnection. This lead to
a (n+1)-conductor multiconductor transmission line (MTL) model.
The design procedure defined for the ZXnoise method [1] [2] is
based on this model, which involves matrices of size n × n. Taking
into account the reference conductor, we may also use a (n+2)-
conductor MTL model. The relationships between the two MTL
models have only been established in the special case of ideal
electric and magnetic shielding by the return conductor [1].

This paper is about the matrices which define the (n+1)-
conductor and (n+2)-conductor MTL models of an interconnection
used according to the ZXnoise method, when the assumption of
ideal shielding is removed. This investigation will lead us to define
two vectors which characterize the shielding performance of the
return conductor and may consequently be used to assess the
residual external crosstalk in the framework of the (n+1)-
conductor MTL model.
Fig.1. Two possible cross-sections for an interconnection-ground structure
intended to be used in a PDL implementing the ZXnoise method, where
1 to 4 are the TCs, where 5 is the return conductor in a and where the
return conductor in b is made of 5A and 5B.

II. Matrices defining the (n+1)-conductor MTL model
Let us investigate the electrical characteristics of an

interconnection intended to operate according to the ZXnoise
method. We consider an electrically short segment of the
interconnection, of length ∆z, for which we want to define the per-
unit-length (p.u.l.) impedance matrix with respect to the return
conductor, denoted by ZR, and the p.u.l. admittance matrix with
respect to the return conductor, denoted by YR. These matrices are
symmetrical n × n matrices defined by theoretical measurement
configurations shown in Fig. 2 and 3. Note that, in Fig. 2 and 3,
the return conductor is shown as a cylindrical shell containing the
TCs, but this geometry is not assumed in any way.

ZR may be measured with the theoretical setup shown in Fig. 2a,
in which a current i is injected by a current source connected
between the TC number α and the return conductor. At the near-
end (on the left), the natural voltages referenced to the return
conductor, denoted by vR 1 α to vR n α , are measured to obtain the
entries ZR 1 α to ZR n α of ZR, respectively, using

 (1)Z
v
i zR

R
β α

β α=
∆

At the far-end of the segment of interconnection being measured
(on the right), the TCs are connected to the return conductor. At



Fig. 2. Measurement of the p.u.l. impedance parameters. R denotes the
return conductor. Only the TCs number α and β are shown.

the far-end, the connection between the return conductor and the
reference conductor is not strictly necessary for the measurement
of ZR, but the presence of this connection allows the definition of
the voltage vX α between the return conductor and the reference
conductor, at the near-end.

YR may conceptually be measured with the theoretical setup
shown in Fig. 3a, in which a voltage v is applied by a voltage
source connected between the TC number α and the return
conductor. At the near-end, the natural currents iR 1 α to iR n α are
measured to obtain the entries YR 1 α to YR n α of YR, respectively,
using

 (2)Y
i
v zR

R
β α

β α=
∆

At the far-end, the TCs and the return conductor are floating. At
the near-end, the current iX1 α flowing out of the return conductor
is not necessary for the measurement of YR, but it is important to
note that this current is not necessarily equal to iR 1 α + ... + iR n α.
Consequently, we introduce the current iX2 α flowing out of the
interconnection, this current being given by
Fig. 3. Measurement of the p.u.l. admittance parameters. R denotes the
return conductor. Only the TCs number α and β are shown.
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III. Shielding action of the return conductor
Any conductor may provide a shielding action. The setup shown

in Fig. 2b is adequate for the assessment of the shielding action of
the return conductor when a current source injects a current !i into
the return conductor. In this case, a good shielding effectiveness
corresponds to low induced voltages referenced to the return
conductor vE 1  to vE n measured at the near-end. We may define the
p.u.l. coupling impedances ZE 1 to ZE n and the p.u.l. external
impedance ZEE as

 (4)Z v
i z

Z
v
i zEE

EE
E

E= ∀ =
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and α α
α

Because of reciprocity, the circuit of Fig. 2a is such that
 (5)∀ = −α α αv Z i zX E ∆



The setup shown in Fig. 3b is adequate for the assessment of the
shielding action of the return conductor when a voltage source
applies a voltage !v to the return conductor. In this case, a good
shielding effectiveness corresponds to low induced currents iE 1  to
iE n measured at the near-end. We may define the p.u.l. coupling
admittances YE 1  to YE n and the p.u.l. external admittance YEE as

 (6)Y i
v z

Y
i
v zEE

EE
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E= ∀ =
∆ ∆

and α α
α

Because of reciprocity, the circuit of Fig. 3a is such that

 (7)∀ = −α α αi Y v zX E2 ∆
If the return conductor was a circular cylindrical shell and the

ground conductor was a coaxial circular cylinder, the ZE α would
be the p.u.l. transfer impedances of the interconnection and the YE α

would be the p.u.l. transfer admittances of the interconnection in
this particular configuration [3] [4]. This would still be the case in
any non-circular-symmetrical configuration where only type 1 and
type 2 couplings are present [5].

IV. Matrices defining the (n+2)-conductor MTL model
 The p.u.l. impedance matrix with respect to ground, denoted by
ZG, is a symmetrical (n+1)×(n+1) matrix. It may conceptually be
measured with the theoretical setup shown in Fig. 2c, in which a
current i is injected by a current source connected between the TC
number α and ground, or between the return conductor and
ground. At the near-end (on the left), the natural voltages
referenced to ground vG 1 α to vG n+1 α are measured to obtain the
entries ZG 1 α to ZG n+1 α of ZR, respectively, using

 (8)Z
v
i zG
G

β α
β α=
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At the far-end, the TCs and the return conductor are grounded.

For the case where the current source is connected to the return
conductor, a comparison of  Fig. 2b and Fig. 2c shows that

 (9)Z ZG n n EE+ + =1 1
and, for 1 # α # n,

 (10)Z Z Z ZG n G n EE E+ += = −1 1α α α

For the case where the current source is connected to one of the
TCs, we see that the setup shown in Fig. 2c is a superposition of
the setups shown in Fig. 2a and Fig. 2b after a sign reversal.
Consequently, for 1 # α # n and 1 # β # n,

 (11)Z Z Z Z ZG R EE E Eα β α β α β= + − −

where (5) was used.
The p.u.l. admittance matrix with respect to ground, denoted by

YG, is a symmetrical (n+1)×(n+1) matrix. It may conceptually be
measured with the theoretical setup shown in Fig. 3c, in which a
voltage v is applied by a voltage source connected between the TC
number α and ground. At the near-end, the natural currents iG 1 α to
iG n α are measured to obtain the entries YG 1 α to YG n α of YG,
respectively, using
 (12)Y
i
v zG
G
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β α=
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At the far-end of the segment of interconnection being
measured, the TCs and the return conductor are floating. For the
case where the voltage source is connected to one of the TCs, a
comparison of Fig. 3a and Fig. 3c shows that, for 1 # α # n and
1 # β # n,

 (13)Y YG Rα β α β=
and
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using (3) and (7), we obtain
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For the case where the voltage source is connected to the return
conductor, we see that the setup shown in Fig. 3c is a
superposition of the setup shown in Fig. 3b after a sign reversal
and, for each value α = 1 to α = n, of one setup shown in Fig. 3a
after a sign reversal. Consequently
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using (3) and (7), we obtain
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At this stage, we have obtained:
# all entries of the matrix ZG as a function of the matrix ZR, of the
vector ZE and of the scalar ZEE ;
# all entries of the matrix YG as a function of the matrix YR, of the
vector YE and of the scalar YEE.

The interconnection may be accurately modeled as a (n+1)-
conductor MTL having no interaction with the external world if
and only if we may, in a given configuration, to a sufficient
accuracy, consider that ZE . 0 Ω and YE . 0 S. In this case, using
(9), (10), (11), (13), (15) and (17), we get
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V. Example
We measured ZG and YG of an interconnection-ground structure

shown in Fig. 4, for s . 1.2 w and h . H . 0.64 w. YG is
approximately given by YG = jω CG with

(20)CG ≈

− − − −
− − − −
− − − −
− − − −
− − − −

F

H

GGGGG

I

K

JJJJJ

116 0 38 0 4 0 2 955
38 118 3 3 7 0 4 107 5
0 4 3 7 118 3 38 107 9
0 2 0 4 38 115 3 96 0
955 107 5 107 9 96 0 913 7

. . . . .
. . . . .
. . . . .
. . . . .
. . . . .

pF/ m

Using (13), (15) and (17), we obtain YR = jω CR with

(21)CR ≈

− − −
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YE = jω CE with
(22)CE ≈
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and YEE = jω CEE with CEE . 1284 pF/m. The return conductor is
clearly not wide enough to fully shield the TCs from the reference
conductor, so that CE is not 0 pF/m and shows a larger electric
external crosstalk coupling for the TCs 1 and 4. At 50 MHz, ZG is
approximately given by ZG = jω LG with

(23)LG ≈

F
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GGGGG
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K

JJJJJ

417 96 73 60 72
96 424 104 73 84
73 104 424 97 83
60 73 97 417 73
72 84 83 73 101

nH/ m

Using (9), (10) and (11), we obtain ZR = jω LR with

(24)L R ≈
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42 357 39 18
19 39 360 43
17 18 43 374

nH/ m

ZE = jω LE with
(25)L E ≈
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and ZEE = jω LEE with LEE . 101 nH/m. LE is not 0 nH/m and its
entries indicate a significant magnetic external crosstalk coupling
for all TCs, at the frequency used for the measurements.

YR and ZR may be used to compute voltages and currents in a
PDL implementing the ZXnoise method. For instance, if CR and
LR are assumed frequency-independent, we may directly compute
the signals and the internal crosstalk voltages shown in Fig. 5, for
optimized source and load resistance matrices. The far-end
crosstalk voltage shown in Fig. 5 is too high for binary signaling.
Fig. 4. Cross-section of an interconnection-ground structure built in a
printed circuit board, where 1 to 4 are the TCs and 5 is the return
conductor. 

Fig 5. Voltages in a PDL using a 0.3 meter long interconnection, when
conductor 2 is excited by a 1V step having a 100 ps rise time.

VI. Conclusion
The matrices ZR and YR of the (n+1)-conductor MTL model are

adequate for designing PDLs according to the ZXnoise method,
because they relate to the natural voltages referenced to the return
conductor and the natural currents on the TCs, which are used by
the signals propagating on the PDL. However, this model alone
does not account for the imperfect shielding action of the return
conductor, which leads to external crosstalk. We have shown that
the vectors ZE and YE characterize this shielding action in the
framework of the (n+1)-conductor MTL model and that ZE and YE

may be derived from a measurement of the matrices ZG and YG.
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