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Abstract — An analytical model for the per-unit-length impedance

matrix of a multiconductor interconnection has recently been

introduced and shown to be physically reasonable. The present

discussion addresses the determination of the model parameters and

the model accuracy.
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I. INTRODUCTION

This paper relates to an analytical model for the per-unit-length

(p.u.l.) impedance matrix of a multiconductor interconnection

having n transmission conductors (TCs) and a reference conductor

(GC), such as the structures shown in Fig. 1 and Fig. 2. The p.u.l.

impedance matrix is a frequency dependent complex n × n matrix

denoted by Z'. It may be split into two terms:

(1)′ = ′ + ′Z Z LI jω 0

where  is the radian frequency, L0 is a frequency independent

real n × n matrix sometimes referred to as the p.u.l. external

inductance matrix, or more precisely as the high-frequency p.u.l.

external inductance matrix and Z'I is a frequency dependent

complex n × n matrix traditionally referred to as the p.u.l. internal

impedance matrix. L'0 is the p.u.l. inductance matrix computed at

a non-zero frequency under the assumption that all conductors of

the interconnection are ideal conductors, i.e., lossless conductors.

It is usually determined using the relation L' 0 = µ0 0 C'0
 1

, where

µ0 is the permeability of vacuum, 0 is the permittivity of vacuum

and C' 0 is the p.u.l. capacitance matrix of an interconnection

obtained from the original interconnection by replacing the

dielectrics with vacuum and the conductors with ideal conductors

having the same geometry. Here, Z'I  is defined by (1). Thus, (1)

is exact and writing the imaginary part Z'I  in the form Im(Z'I )

= j  L'I  defines L'I as an incremental inductance instead of an

internal inductance determined by the average magnetic energy

within the conductors [1].

For non-magnetic conductors having a homogeneous cross-

section and no surface roughness, an analytical model for Z'I ,

denoted by Z'N , has recently been proposed [2]. At high frequency

(h.f.), it takes into account a normal skin effect, the crowding of

currents at the edges of the conductors (edge effect), and the

interaction between the current distributions on different

conductors (proximity effect). It was shown that this analytical

model is physically reasonable and realizable in the sense that it is

accurate at dc and h.f., corresponds to a finite dc inductance
Fig. 1. Cross-section of a multiconductor microstrip interconnection
comprising n = 4 transmission conductors (TCs), identified as TC1
to TC4, and a reference or ground conductor (GC).

Fig. 2. Cross-section of a multiconductor stripline interconnection.

matrix, and that it represents a causal and passive linear system.

Replacing Z'I in (1) with Z'N produces the analytical p.u.l.

impedance matrix model discussed in this paper.

This model is briefly presented in Section II. The determination

of some of the model parameters is discussed in Section III. In

Section IV, we compute the model parameters for two

interconnections and we compare the impedance matrix predicted

by the model with an impedance matrix computed using the

differential surface admittance operator technique [1] [3].

II. PRESENTATION OF THE Z' N  MODEL

We assume that all TCs have the same homogeneous resistivity

TC and that the GC has an homogeneous resistivity GC . The

matrix of the equivalent inverse widths of the TCs, denoted by

KTC , and the matrix of the equivalent inverse widths of the GC,

denoted by KGC , can be determined at a low computational cost

[4] [5]. KTC  and KGC  are frequency independent, real and positive

semidefinite n × n matrices. The Z'N  model is defined by



(2)′ = ′ + ′ + ′Z Z Z ZN NR NTC NGC

where, for the indices  and  ranging from 1 to n with   , the

entries of the matrices Z'NR , Z'NTC and Z'NGC are given by

(3)
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where s is the Laplace transform variable, where each square root

symbol denotes the principal root, where the p.u.l. dc resistances

of the TCs are denoted by R'DC 1 to R'DC n , and where the p.u.l.

resistance R'DCGC and the p.u.l. inductances L'MAX 1 to L'MAX n ,

L'NEGGC and L'MAXGC are positive parameters.

At frequencies high enough for the skin effect to be well

developed, the largest contribution to Z'N  comes from Z'NTC and

Z'NGC and the 1 are negligible in (4) and (5). Thus, the parameters

controlling the h.f. behavior of the model are TC , GC , KTC  and

KGC . Conversely, the dc value of Z'N  is a resistance matrix solely

determined by Z'NR . It may be easily verified that Z'NR , Z'NTC and

Z'NGC contribute to the dc inductance matrix. The main motivation

for introducing the Z'N model is that all entries of the dc

inductance matrix are finite, unlike the dc inductance matrix of a

model in the form Z'S = A + s
1/2

 B where A and B are two

frequency independent matrices. The parameters R'DC 1 to R'DC n

of Z'NR  are unambiguously defined above, but not the parameters

R'DCGC , L'MAX 1 to L'MAX n , L'NEGGC and L'MAXGC . They will be

further discussed in the Section III and IV.

It was observed that KTC is strictly diagonally dominant. Using

this result, it was proved that the impedance matrices Z'N, Z'NR,

Z'NTC and Z'NGC each represents a passive linear system, and

consequently a causal system [2]. In [2], it was assumed that

L'NEGGC = L'MAXGC , but this assumption has been removed in (3).

This has no impact on the passivity of Z'N, Z'NR, Z'NTC and Z'NGC .

L'NEGGC controls a possible decrease of low frequency mutual

impedances, caused by the proximity effect.
Fig. 3. For the multiconductor microstrip interconnection, the dc

p.u.l. self-inductances (2 curves A), the diagonal entries of L 0 (2
curves B), the dc p.u.l. mutual inductances (4 curves C) and the

non-diagonal entries of L 0 (4 curves D) as a function of b.

III. DISCUSSION OF SOME MODEL PARAMETERS

Let L'DC be the dc inductance matrix of the interconnection. In

[6] it is shown that, for a multiconductor microstrip structure such

as the one shown in Fig. 1, all entries of L'DC become large as

b  . Using [7, § 4], it can be shown that the same applies to a

multiconductor stripline structure such as the one shown in Fig. 2.

In contrast, if the breadth b of the GC exceeds the total width W

occupied by the TCs and the spacing between them, L0 quickly

approaches a limit as b becomes large.

As an example , the entries of L'DC and L0 are shown in Fig. 3

as a function of b, for the multiconductor microstrip

interconnection shown in Fig. 1, in the case t = h = a = w1 = w2 =

d1 = d2 = 50 µm. L'DC was computed using an exact formula

implementing modified partial inductances [6]. All entries of L'DC

are equivalent to (µ0 ln b) /(2 ) as b  , so that, in Fig. 3, they

increase slowly as b increases. L0 was computed by the method of

moment using pulse expansion and 860 matching points.

The fact that the entries of L'DC  become large as b   follows

from an homogeneous dc current distribution in the GC, for which

most of the current in the GC flows at a distance of the TC which

increases with b. We are led to the following statements:

# for b > W + 3(h + t) = 650 µm, the h.f. current distribution in the

GC is close to the current distribution for b = , so that we make

a small error if we use L' 0 , KTC  and KGC  computed for b = ;

# L'MAX 1 to L'MAX n , L'NEGGC and L'MAXGC must be determined for



Fig. 4. For the multiconductor microstrip structure, some entries of R' according to the Z'
N 

 model (blue solid curves) and to
the accurate computation (red dadot curves): R' 11 (A and B), R' 12 (C and D), R' 13 (E and F) and R' 14 (G and H).

Fig. 5. For the multiconductor microstrip structure, some entries of L' according to the Z'
N 

 model (blue solid curves) and to
the accurate computation (red dadot curves): L' 11 (A and B), L' 12 (C and D), L' 13 (E and F) and L' 14 (G and H).
a finite value of b, for the main objective of minimizing the error

on the diagonal entries R' = Re(Z' ) at intermediate frequencies;

# R'DCGC should be the actual dc resistance of the GC.

IV. TWO EXAMPLES

A first example relates to the multiconductor microstrip

interconnection defined above, in the case b = 1350 µm. In Fig. 3,

we see that all entries of L'DC are positive in this case. Fig. 4 and

Fig. 5 show some entries of R' and L' = Im(Z' )/  according to the
Z'N  model and to an accurate numerical computation using the

differential surface admittance operator technique [1] [3]. For R',

we observe a good agreement at every frequency and an excellent

agreement at every frequency except in the intermediate frequency

range from 200 kHz to 100 MHz. For L', we observe a good

agreement except at frequencies below 500 kHz, but this

discrepancy cannot lead to a significant error in a simulation

involving an on-board, on-package, or on-chip interconnections.

A second example relates to the multiconductor stripline



Fig. 6. For the multiconductor stripline structure, some entries of R' according to the Z'
N 

 model (blue solid curves) and to the
accurate computation (red dadot curves): R' 11 (A and B), R' 12 (C and D), R' 13 (E and F) and R' 14 (G and H).
interconnection shown in Fig. 2, in the case t = h = a = w1 = w2 =

d1 = d2 = 50 µm and b = 1350 µm. Here all entries of L'DC are

positive, except L'DC 14 and L'DC 41 . Fig. 6 shows some entries of

R' according to the Z'N  model and to the same numerical

computation as above. The numerical model predicts a non-

increasing frequency dependence for R' 14, below about 35 MHz.

Since such a complicated behavior is not described in the

literature, we performed an independent verification using a 2-D

code based on the method of filaments, up to 10 MHz, for which

we obtained the same result. A good agreement between the Z'N
models and the numerical computation is obtained only for the

diagonal entries of R' and for the non-diagonal entries of R'

exceeding about 2 /m. However, the error observed for the non-

diagonal entries of R' corresponds to negligible losses compared

to the losses caused by the diagonal entry of R'.

In both examples, at every frequency, the maximum column

sum matrix norm and the maximum row sum matrix norm of the

error in R' are small compared to the corresponding norm of R',

and very small except in an intermediate frequency range.

In both examples, the Z'N  model uses L' 0 , KTC  and KGC  given

in § VII of [5], computed for b = . It uses the values of L'MAX 1 to

L'MAX n , L'NEGGC  and L'MAXGC produced by an optimization

process in which the objective function is a linear combination of

squared errors of entries of R' at different frequencies. For Fig. 4

and Fig. 5, we have used L'MAX 1 =  L'MAX 4  76.38 nH/m,

L'MAX 2 =  L'MAX 3  88.00 nH/m, L'NEGGC  67.57 nH/m and

L'MAXGC  134.28 nH/m. For Fig. 6, we have used L'MAX 1 =

L'MAX 4  64.73 nH/m, L'MAX 2 =  L'MAX 3  71.35 nH/m, L'NEGGC 

55.21 nH/m and L'MAXGC  146.99 nH/m.

V. CONCLUSION

We have used an analytical and physically reasonable p.u.l.

impedance matrix model of a multiconductor interconnection,
presenting two differences with the approach used in [2]: a new

parameter has been introduced and a least square error

optimization was used to obtain L'MAX 1 to L'MAX n , L'NEGGC and

L'MAXGC . The values obtained for L'MAX 1 to L'MAX n  and L'MAXGC

show that they cannot be regarded as dc internal inductances,

which are less than 48.32 nH/m for any rectangular conductor [8].

The Z'N  model used in this paper has a small number of real and

frequency independent parameters, but it provides a good accuracy

for the types of interconnections that we have considered.
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