
An Analytical Resistive Loss Model for Multiconductor

Transmission Lines and the Proof of its Passivity

Frédéric Broydé and Evelyne Clavelier

Tekcem

12, chemin des Hauts de Clairefontaine, 78580 Maule, France

tel: +33 1 34 75 13 65     e-mail: {fredbroyde,eclavelier}@tekcem.com 
Abstract — A new model for resistive losses can be used within  the

multiconductor transmission line model of a multiconductor

interconnection. It provides accurate results at low and high

frequencies. We prove that this model is passive.
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I. INTRODUCTION

This paper is about a model for the resistive losses in a

multiconductor interconnection. This model was created for

investigating innovative on-chip or chip-to-chip signaling

schemes. In this context, one wishes to handily vary the length of

the interconnection, so that it is advantageous to use a

multiconductor transmission line (MTL) model for one or more

segments of the interconnection. Usually this will be a uniform

MTL model, in which the length of a segment is easily changed

using a single simulation parameter, as opposed to a macromodel

which is synthesized for a fixed length. Thus, the loss model must

provide a per-unit-length (p.u.l.) impedance matrix.

In this paper, we do not try to take into account characteristics

which might occur but are not necessarily present, such as plating

and/or roughness of the conductors, anisotropy of a composite

substrate, etc. We are also not interested in discontinuities such as

vias, crossing conductors, packaging parasitics, etc. We propose

a closed-form model for the p.u.l. internal impedance matrix of a

uniform multiconductor interconnection complying with these

assumptions and having n transmission conductors (TCs) and a

reference or ground conductor (GC). The cross-section of such a

(n + 1)-conductor interconnection is shown in Fig. 1, in the special

case of a simple multiconductor microstrip structure.

In a previous paper [1], the authors have presented a simple

method for computing a high-frequency (h.f.) current distribution

in the cross-section of the interconnection, which takes into

account the normal skin effect, the crowding of currents at the

edges of each conductor (edge effect), and the interactions

between the currents flowing in different conductors (proximity

effect). This current distribution was used to compute the h.f. p.u.l.

resistance matrix of the interconnection. This result is summarized

in Section II. The model for the p.u.l. internal impedance matrix

is introduced in Section III, where we study its behavior at high

and low frequencies. We prove the passivity of the model in

Section IV. Passivity entails that the model is causal [2] [3]. It a

posteriori justifies an otherwise arbitrary model. An application to

the simulation of a parallel link is provided in Section V.
Fig. 1. Cross-section of a multiconductor microstrip interconnection
comprising n = 4 transmission conductors (TCs) and a reference or
ground conductor (GC).

II. HIGH-FREQUENCY P.U.L. RESISTANCE MATRIX

The MTL model of the interconnection includes the h.f. p.u.l.

external inductance matrix of the interconnection, a frequency

independent real n × n matrix denoted by L0. It may be defined as

the per-unit-length inductance matrix computed using the high-

frequency current distribution in the conductors.

For simplicity, we assume that the resistivity and the skin depth

are the same in all TCs and denoted by TC and TC, respectively.

At sufficiently high frequencies, the thickness and width of each

TC are each much greater than TC. The h.f. p.u.l. resistance matrix

of the TCs, denoted by RHFTC, is given by [1]

(1)R KHFTC
TC

TC

TC=
ρ

δ

where we refer to KTC as the matrix of the equivalent inverse

widths of the TCs. KTC can be obtained at a low computational

cost using quantities determined during the computation of  L0.

Using GC and GC to denote the resistivity and the skin depth

of the GC, respectively, the h.f. p.u.l. resistance matrix of the GC,

denoted by RHFGC , is given by [1]

(2)R KHFGC
GC

GC

GC=
ρ

δ

where we refer to KGC as the matrix of the equivalent inverse

widths of the GC. KGC can be obtained at a low computational

cost using numerical integrations along the boundary of the GC.

Finally, the h.f. resistance matrix of the interconnection, denoted

by RHF, is given by

(3)R R R K KHF HFTC HFGC
TC

TC

TC
GC

GC

GC= + = +
ρ

δ

ρ

δ

The conductors being reciprocal and passive, KTC and KGC are

frequency-independent real positive semidefinite matrices [4,



§ 7.1]. Thus, any diagonal entry of KTC or KGC is non-negative.

As an example, we consider the multiconductor microstrip

interconnection shown in Fig. 1, in the case t = 34.8 µm, w1 = w2 =

d1 = d2 = 203.2 µm and h = 152.4 µm. Using the method of

moment with pulse expansion and 336 matching points [5, § 3.3],

we find that KTC and KGC are given by

(4)K TC = −

2814 39 11 14

39 2893 58 11

11 58 2893 39

14 11 39 2814

1m

and

   (5)K GC = −

894 427 170 81

427 872 422 170

170 422 872 427

81 170 427 894

1m

In (4), all entries of KTC are nonnegative. However, for other

interconnections, we have obtained negative non-diagonal entries

in KTC. In all configurations for which we have computed KTC and

KGC , we found that KTC is strictly diagonally dominant [4,

§ 6.1.9], and that KGC is nonnegative [4, § 8.1].

III. A MODEL FOR THE P.U.L. INTERNAL IMPEDANCE MATRIX

In this paper, the p.u.l. internal impedance matrix of the

interconnection, denoted by ZI , is given by ZI = Z  j  L0 , where

Z is the p.u.l. impedance matrix of the interconnection. This

definition is not the one used in [6], but it is in line with the one

used in [7, § 2.8].  We clearly have ZI = 0 for lossless conductors.

Complying with Wheeler’s incremental-inductance rule [8], we

assume that, for frequencies high enough for the skin effect to be

well developed, the real and imaginary parts of ZI become

approximately equal and exhibit a f 1/2
 increase with frequency.

Thus, the h.f. p.u.l. internal impedance matrix satisfies

(6)Z K KI HF
TC

TC

TC
RC

RC

RCj≈ + +1
ρ

δ

ρ

δ

Wheeler’s incremental-inductance rule is not an exact law, but

it gives reasonably accurate values for a single conductor [6] [9].

Some authors assume that, in the Laplace domain, ZI is given by

the model ZS = A + s1/2
 B where s is the Laplace transform

variable and where A and B are two frequency independent

matrices [5, § 5.3]. A and B can be determined such that ZS

complies with (6) and provides an exact dc resistance matrix.

However, ZS produces non-physical infinite dc self-inductances

and infinite or zero dc mutual inductances. Also, in the case of a

single TC of circular cross-section having a coaxial return path, for

s = j  where  is real, the model ZS = A + B s1/2
 produces large

errors in the vicinity of the skin-effect onset frequency [7, § 2.8].

In the same case of a single TC of circular cross-section having

a coaxial return path, another model assumes that ZI is given by

ZB = (A + B s)
1/2

. This model is also compatible with (6) and it can

provide a good approximation of the exact solution at all
frequencies [7, § 2.8]. The accuracy of ZB in the case of the

circular symmetry is caused by the fact that A and B can be chosen

such that an exact h.f. impedance, an exact dc resistance and an

exact dc inductance are simultaneously obtained. Unfortunately,

this miracle does not occur with other single-TC configurations

(for instance a TC having a rectangular cross-section) and this

model using ZB does not lend itself to an obvious generalization to

n  2.

We have tried to define a p.u.l. internal impedance matrix model

combining the following properties: being exact at dc; complying

with (6); producing finite and reasonable dc self- and mutual

inductances; and ensuring passivity. For want of a better approach,

we have used a trial-and-failure process in which the most difficult

part was the proof of passivity covered in Section IV. This led us

to a new model for ZI, denoted by ZN and defined by

(7)Z Z Z ZN NR NTC NGC= + +

where, for the indices  and  ranging from 1 to n with   , the

entries of the matrices ZNR , ZNTC and ZNGC are respectively given

by

 

(8)
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and

Z KNGC

GC
i n

GCii

MAXGC

MAXGC

GC
i n

GCii

GC

K

L

sL

K

= + −≤ ≤

≤ ≤

µ ρ

µ ρ
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0
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2
2

1
4

1
max

max

(10)

where each square root symbol denotes the principal root, where

the p.u.l. dc resistances of the TCs are denoted by RDC 1 to RDC n,

the p.u.l. dc resistance of the GC is denoted by RDCGC, the p.u.l.

inductances LMAX 1 to LMAX n relate to the TCs and the p.u.l.

inductance LMAXGC relates to the GC.

Since it comprises several terms in the form (A + B s)1/2, the

model ZN can be seen as an extension of the model ZB, intended to

provide a causal and passive approximation for any configuration

of the TCs and GC.

The Fig. 2 shows some entries of ZN computed with (7)-(10),



Fig. 2. Some e
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N 
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for the multiconductor microstrip interconnection

considered in Section II. In this computation, LMAX 1

to LMAX n are equal to the p.u.l. dc internal

inductance 24.3 nH/m of the identical TCs,

computed using a closed-form approximation [10,

eq. (30)-(31)]. In this computation, LMAXGC =

LDC /10. In Fig. 2, we also assume GC = TC =

16.78 n .m and RDCGC = 4.8 m /m. We find that

the dc internal inductance matrix defined by

                (11)L
Z

I DC

N j
=

→
lim

Im

ω

ω

ω0

is given by

      (12)L I DC =

26 8 15 0 6 0 3

15 26 7 16 0 6

0 6 16 26 7 15

0 3 0 6 15 26 8

. . . .

. . . .

. . . .

. . . .

nH

m

We observe that ZN produces finite and

reasonable dc self- and mutual inductances. This is

in contrast with the model ZS, in which infinite dc self- and mutual

inductances produce various artifacts, which are not easy to detect

and sort out in time domain simulations. It can easily be shown

that our model has the following characteristics:

# ZN is exact at dc;

# ZN complies with (6) at frequencies sufficiently high to allow us

to neglect the 1 in each square root of (9)-(10) and to neglect  ZNR ,

given by (8), in (7);

# the dc internal inductance produced by ZN   ranges between

LMAX  and LMAX  + LMAXGC and, for   , the dc internal

inductance produced by ZN   is finite.

IV. PASSIVITY OF THE MODEL

We shall outline the proof of the passivity of our model ZN,

based on the following well-known theorem [2, § IV.D] [3].

Theorem on passivity. An impedance matrix Z(s) represents a

passive linear system if and only if

(i) each entry of Z(s) is defined and analytic in the half plane

 > 0, where  = Re(s);

(ii) Z*(s) + Z(s), where the star indicates the hermitian adjoint,

is a positive semidefinite matrix for all s such that  > 0;

(iii) Z(s̄ ) = Z(s),  where the bar indicates the complex conjugate.

The conditions (i) and (iii) are clearly satisfied for the

impedance matrices ZN, ZNR, ZNTC and ZNGC defined by (7)-(10).

The condition (ii ) is addressed below.

If r and m1, ..., mn are real numbers, for any p  {1,..., n} let us

use Mp (m1, ..., mp) to denote the matrix

(13)M p p

p

m m

m r r

r

r

r r m

1

1

, , =
ntries of Z
N
 versus frequency. Curve a: real part of Z

N 11. Curve b:

12. Curve c: real part of Z
N 13. Curve d: imaginary part of Z

N 11. Curve
art of Z

N 12. Curve f: imaginary part of Z
N 13.
If for all   {1,..., n} we have m  > r > 0, we can prove

inductively that, for any p  {1,..., n}, we have

(14)det , ,M p pm m1 0>

so that, all elements of a nested chain of n principal minors being

positive, Mn (m1, ..., mn) is positive definite by [4, § 7.2.5]. A

diagonal entry of ZNR + ZNR * is given by

(15)Z Z R RNR NR DC DCGCα α α α α+ = +2

This quantity is positive. A non-diagonal entry of ZNR + ZNR *

is given by

(16)Z Z
R

sE

R

sE
NR NR

DCGC DCGC
α β βα+ =

+
+

+1 1
where    and where E is a positive real number. We see that

ZNR + ZNR * is in the form of (13), and it is possible to prove that,

if  > 0, then for all   {1,..., n}, we have m  > r > 0. Thus, we

conclude that the condition (ii) is satisfied by ZNR.

+\{0}being the set of positive real numbers, let us define a

function of s   and   +\{0}, by

(17)z s
c s

c
,λ

λ

λ
= + −

2
1

4
1

2

where c  +\{0}. z(s, ) appears 3 times in (9)-(10). It can be

shown that:

(iv) for  > 0, we have Re(z(s, )) > 0;

(v) for  > 0, Re(z(s, )) is an increasing function of .

Using (v) and the assumption that KTC is strictly diagonally

dominant (see the end of Section II), it is possible to show that if

 > 0 then ZNTC + ZNTC * is strictly diagonally dominant. Each

KTC   being positive, by (iv) each diagonal entry of ZNTC + ZNTC *

is positive for  > 0. We conclude that, if  > 0 then ZNTC + ZNTC *

is positive definite by [4, § 7.2.3]. Thus, the condition (ii) is

satisfied by ZNTC.

By (iv), if  > 0, ZNGC + ZNGC * is the product of a positive



Fig. 3. Attenuation at the far-end when a signal is applied to TC 1, with a lossless model (dashed curves) and our model for resistive losses
(solid curves). Curves a: on TC1. Curves b: on TC2. Curves c: on TC3. Curves d: on TC4. Dielectric losses are not taken into account.
constant and the positive definite matrix KGC , so that

ZNGC + ZNGC * is positive definite by [4, § 7.1.3] and the condition

(ii) is satisfied by ZNGC. Moreover, since

(18)Z Z Z Z Z Z Z ZN N NR NR NTC NTC NGC NGC+ = + + + + +∗ ∗ ∗ ∗

we find that ZN + ZN * is positive definite for  > 0. Thus, the

condition (ii) is satisfied by ZN. We conclude that the impedance

matrices ZN, ZNR, ZNTC and ZNGC each represents a passive linear

system, and consequently a causal system [2, § III.C] [3].

V. SIMULATION OF A PARALLEL LINK

The model ZN can easily be implemented in a frequency domain

or time domain simulation tool using a MTL model. For instance,

we consider a parallel link comprising the multiconductor

microstrip interconnection shown in Fig. 1 and presented in

Section II, in the case of a lossless substrate of  relative

permittivity r = 4.65. We assume a length of 30 cm and that the

devices connected at the near-end and at the far-end are seen by

the interconnection as linear devices having an impedance matrix

equal to 50  × 14, where 1p is the identity matrix of size p × p.

The Fig. 3 shows the attenuations at the far-end, when a signal is

applied to TC 1, computed with our in-house simulation tools.

VI. CONCLUSION

We have defined a new model for the p.u.l. internal impedance

matrix. At high frequencies, it assumes a normal skin effect (i.e.,

the frequency is not so high that the anomalous skin effect occurs

[11, ch. 4]) and it takes into account the edge effect and the

proximity effect. This analytical model is physically reasonable

and realizable in the sense that it is exact at dc, accurate at high

frequencies, corresponds to a finite dc inductance matrix, and that

it represents a causal and passive linear system. As far as we
know, no other analytical model combines these properties.

Another important attribute of an actual interconnection is that

a variable measured at the far-end at a given point in time t is not

influenced by any voltage or current at the near-end occurring

after t less a suitably defined travel time. This property may be

referred to as transmission-line-causality. Unlike causality, it is

not a direct consequence of passivity. The transmission-line-

causality of our model is a subject for further research.
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