
Fig. 1. Cross-section of a multiconductor microstrip interconnection
comprising n = 4 transmission conductors (TCs) and a reference or
ground conductor (GC). The arc length on the perimeter of each
TC, denoted by s, is explained and used in Section V.

A Passive Analytical Per-Unit-Length Internal Impedance
Matrix Model for Multiconductor Interconnections

Frédéric Broydé and Evelyne Clavelier
Tekcem

Maule, France
e-mail: fredbroyde@tekcem.com, eclavelier@tekcem.com

Abstract — Based on multiconductor transmission line (MTL)
theory, we describe a technique for a simple computation of the high-
frequency (h.f.) current distribution in a multiconductor
interconnection and of the h.f. per-unit-length (p.u.l.) resistance
matrix of the interconnection. This result is used in a model for the
p.u.l. internal impedance matrix of the interconnection. We show that
this model is passive, hence causal.

I. INTRODUCTION

When a researcher wishes to explore possible designs of
innovative interface circuits for interconnections built in printed

circuit boards or multi-chip modules, he does not need to simulate
an actual link comprising vias, packaging parasitics, etc, since no
detailed configuration is specified. At this early design stage, it is
convenient to use a multiconductor transmission line (MTL) model
for the interconnection, usually a uniform MTL model in which
the length of the interconnection is easily changed using a single
simulation parameter. If the MTL model takes resistive losses into
account, it uses a non-zero per-unit-length (p.u.l.) internal
impedance matrix, precisely defined below in Section VII.

This paper proposes an analytical model for the p.u.l. internal
impedance matrix of a uniform multiconductor interconnection
having n transmission conductors (TCs) and a reference or ground
conductor (GC), for instance used for signal transmission in a
parallel link. The cross-section of such an (n + 1)-conductor
interconnection is shown in Fig. 1, in the special case of a simple
multiconductor microstrip structure. Our model does not take into
account characteristics which might occur but are not necessarily
present, such as plated conductors (e.g. nickel-plated traces),
conductor roughness, anisotropy of a composite substrate, etc.

In sections II to VI of this paper, we want to describe the high-
frequency (h.f.) current distribution in the cross-section of the
actual interconnection, referred to as “interconnection 1”, and to
use this result to compute its h.f. p.u.l. resistance matrix. In the
case of a two-conductor interconnection (for which n = 1), the
current distribution is usually computed as the solution of an
equation involving the longitudinal electric field or vector
potential [1] [2]. In this paper, we consider a different approach,
which only applies in the quasi-TEM approximation. However,
our approach is easily implemented and fast, even in the case
n $ 2. We define an “interconnection 2” as identical to the
interconnection 1, except that, in the interconnection 2, the
dielectrics are replaced with vacuum and the conductors are
replaced with ideal conductors having the same geometry. Section
II states some results of electromagnetic theory and MTL theory,
applicable to the interconnection 2. In Sections III and IV, we
establish general properties of the current and charge distributions
in the interconnections 1 and 2. In Sections V and VI, these results
are used to derive the h.f. current distribution and the h.f. p.u.l.
resistance matrix of the interconnection 1.

The model for the p.u.l. internal impedance matrix is introduced
in Section VII. We prove the passivity of this model in Section
VIII, which also guaranties that the model is causal [3] [4]. An
example of interconnection is treated throughout the paper.

II. LOSSLESS INTERCONNECTION WITHOUT DIELECTRICS

In the interconnection 2 defined in the introduction, we only
consider the propagation of TEM waves along the z axis, which
takes place at the velocity of light in vacuum, denoted by c0. The
most general frequency domain electric field solution is given by
[5, § 9.1] [6, § 3.1]
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where ω is the radian frequency, EA (x, y) is a transverse electric
field applicable to a wave propagating in the direction of
increasing z, and EB (x, y) is a transverse electric field applicable
to a wave propagating in the direction of decreasing z. The two-
dimensional fields EA (x, y) and EB (x, y) are related to the two-
dimensional gradients of the potential functions ψA (x, y) and
ψB (x, y), by EA (x, y) = !!!!LT ψA (x, y) and EB (x, y) = !!!!LT ψB (x, y),
where LT denotes the transverse part of the vector operator L.  The
magnetic field is given by

(2)H e E E= × −
F
HG

I
KJ

− +1

0

0 0

η

ω ω

z A

j
c

z

B

j
c

z
x y e x y e, ,b g b g



where ez denotes the unit vector of the z axis and η0 is the intrinsic
impedance of free-space. The equations (1) and (2) are direct
consequences of Maxwell’s equations.

According to MTL theory, for any interconnection, the column-
vector of the voltages of the TCs with respect to ground, denoted
by V(z), and the column-vector of the currents on the TCs, denoted
by I(z), are given by [7, § 4.3.2] [8]
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where T is the transition matrix from modal currents to natural
currents, Γ is the diagonal matrix of the propagation constants, ZC
is the characteristic impedance matrix of the MTL and where IA
and IB are column-vectors of currents determined by the
configurations at the ends of the interconnection. For the
interconnection 2, Γ = (ω/c0) 1n, where 1n denotes the identity
matrix of size n × n, ZC is real and we may choose T = 1n [7,
§ 4.4.1]. Thus, we may write
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where VA and VB are column-vectors of voltages determined by
the configurations at the ends of the interconnection. Clearly,
ψA (x, y) is the solution of Laplace’s equation LT 

2ψA (x, y) = 0 for
the Dirichlet boundary conditions defined by VA, while ψB (x, y)
is the solution of Laplace’s equation LT 

2ψB (x, y) = 0 for the
Dirichlet boundary conditions defined by VB.

III. SURFACE CURRENT DENSITY

In the interconnection 2, the surface current density being axial
(i.e. parallel to ez), the axial component of the surface current
density on the surface of the conductors is given by

(7)j x y zS z= ⋅ ×e n H , ,b g
where n is the unit vector normal to the boundary drawn from the
conductor to vacuum. Using (2), we get
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Let us consider a first configuration where, at a given abscissa

z = zG, a column-vector of the currents on the conductors, denoted
by I(zG), is observed. On the boundary of the conductors,
according to (8), we may write
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Here, ψG (x, y) is the solution of Laplace’s equation
LT 

2ψG (x, y) = 0 for the Dirichlet boundary conditions defined by
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where we have used (6). Consequently, the surface current density
jS does not depend on the choice of VA and VB and is uniquely
defined by I(zG). Clearly, ψG (x, y) is a linear function of I(zG), but
it is otherwise independent of zG and of frequency. Consequently,
at a given (x, y) on the boundary of the conductors at z = zG, using
(9), we find that jS is a linear function of I(zG), which may be
represented with the matrix M(x, y) such that

(13)j x y z x y zS G G, , ,b g b g b g= M I
where M(x, y) is frequency-independent and has the dimensions
of m!!!!1. Moreover, we observe that, if I(zG) is a real vector,
ψG (x, y) is a real potential function because, in (12), ZC is a real
matrix. Thus, if I(zG) is a real vector, (9) shows that jS is real, so
that M(x, y) is real.

For the interconnection 1, our reasoning does not apply because
(2) and (6) need not be satisfied. Let us assume that resistive losses
are small, so that the currents mainly flow close to the surface of
the conductors and a surface current density jS can be considered.
No general formula can be used in place of (8) since MTL theory
is exactly compatible with Maxwell equations only in the case of
an homogeneous medium surrounding perfect conductors.
However, in the framework of MTL theory, at each abscissa z, the
effects of I(z), such as the magnetic field and the resulting jS given
by (7), are assumed to be independent from the effects of V(z),
such as the electric field. Thus, for a given I(z), jS is unaffected by
the presence of dielectrics and we can state the following theorem.
Theorem on the surface current density. At a given abscissa z =
zG of the interconnection 1, for small resistive losses (h.f. current
distribution), the surface current density jS on the boundary of the
conductors is given by (13), where M(x, y) is a real 1 × n matrix
which neither depends on the abscissa nor on the frequency.

IV. SURFACE CHARGE DENSITY

In the interconnection 2, at the boundary of the conductors, the
surface charge density is given by
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where ε0 is the permittivity of vacuum. Let us consider a second
configuration where, at an abscissa z = zH, a column-vector of the
p.u.l. charge density on the boundary of the conductors, denoted
by Q(zH), is observed. By charge conservation, we have
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Using (5) and (6), we get
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At z = zH, on the boundary of the conductors, according to (14),
we may write

(17)ρ ε ε ψS H T H= ⋅ = − ⋅∇0 0n E n
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Here, ψH (x, y) is the solution of Laplace’s equation
LT 

2ψH (x, y) = 0 for the Dirichlet boundary conditions defined by
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where we have used (16). Thus, the surface charge density ρS is
uniquely defined by V(zH) or equivalently by Q(zH). We see that
ψH (x, y) is a linear function of Q(zH), but it is otherwise
independent of zH and of the frequency. Consequently, at a given
(x, y) on the boundary of the conductors at z = zH , ρS is a linear
function of Q(zH), which may be represented with the frequency-
independent matrix N(x, y) such that

(21)ρ S H Hx y z x y z, , ,b g b g b g= N Q
where N(x, y) has the dimensions of m!!!!1. Additionally, we observe
that, if Q(zH) is a real vector, ψH (x, y) and V(zH) are real because
ZC is a real matrix. Thus, if Q(zH) is real, (17) shows that ρS is
real, so that N(x, y) is real and describes the electrostatic charge
distribution. We have proved a second theorem.
Theorem on the surface charge density. At a given abscissa z =
zH of the interconnection 2, the surface charge density ρS on the
boundary of the conductors is given by (21), where N(x, y) is a real
1 × n matrix which neither depends on the abscissa nor on the
frequency, N(x, y) describing the electrostatic charge distribution.

V. HIGH-FREQUENCY CURRENT DISTRIBUTION 

We now observe that ψG (x, y) and ψH (x, y) are the solutions of
Laplace’s equation for the Dirichlet boundary conditions defined
by ZC I(zG) and c0 ZC Q(zH), respectively. Thus, for I(zG) =
c0 Q(zH) we have ψG (x, y) = ψH (x, y), so that (9) and (17) show
that ρS /ε0 = η0 jS. Consequently,

N(x, y) = M(x, y) (22)

Thus, we obtain the following theorem.
Theorem on the connection of charge and current densities.
For an MTL with small resistive losses (h.f. current distribution),
at a given abscissa z, for a given I(z), the surface current density
jS at the surface of the conductors is the product of an arbitrary
velocity vD and the surface charge density at the surface of the
conductors in a configuration where all dielectrics are replaced by
vacuum and where Q(z) = I(z)/vD.

Let us now see how this theorem can be used to easily
determine the h.f. current distribution. The MTL model of the
Fig. 2. Surface current density (arbitrary unit) measured on
TC 1, versus s, when a current is injected in the TC 1 (a), TC
2 (b) or TC 3 (c).

interconnection includes the h.f. p.u.l. external inductance matrix
of the interconnection 1, denoted by L0. This matrix is given by
L0 = µ0 ε0 C0

!!!!1, where µ0 is the permeability of vacuum and C0 is
the p.u.l. capacitance matrix of the interconnection 2. In order to
assess C0, the perimeter of each TC is usually divided in small
strips. Let us use A to denote the set of the indices of the strips
which form the boundaries of all TCs. The set A may be
partitioned into mutually exclusive subsets A1, ... An, where for any
integer j such that 1 # j # n,  the subset Aj contains the indices of
the strips of the TC number j. At the final stage of the computation
of C0 by the method of moment using pulse expansion and point
matching [7, § 3.3], a capacitance matrix C0 is computed, an entry
C0 α β of C0 being the p.u.l. charge of the strip number α when the
voltage between the center of the strip number β and ground is
1 V, the voltage between the center of each other strip and ground
being 0 V. The entry C0 i j of C0 is given by
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At this point, an estimate of N(x, y) = M(x, y) is available, since,
at any point (X, Y) on the strip number α we have 
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where we use wα to denote the width of the strip α, where tA
denotes the transpose of A and where ej denotes the column-vector
having n entries, said entries being zero except the j-th entry which
is equal to 1. Let us for instance consider the interconnection
shown in Fig. 1, with t = w1 = w2 = 50 µm and h = d1 = d2 =
50 µm. On a given TC, the normalized arc length along the
perimeter of the cross section increases clockwise, from the point
s = 0, shown in Fig. 1, to s = 1. The Fig. 2 shows the current
distribution on the TCs when a current is injected on a single TC,
computed using (24) and 336 matching points. Current crowding
is visible near edges. The proximity effect is also plain. Thus, eddy
currents are induced in all non-excited conductors, and this
phenomenon will contribute to the h.f. resistive losses.



VI. HIGH-FREQUENCY P.U.L. RESISTANCE MATRIX

Let us assume that we inject the currents of the column-vector
I into the TCs. Let us use iS (α, I) to denote the current flowing in
the strip α. For any j, we have
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where [x]j is the j-th entry of the vector x. At high frequencies,
according to the theorem on the surface current density, we may
define a real matrix QV having n columns such that, for any I, the
current flowing in the strip α is given by
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where k is an arbitrary non-zero constant. Using (25), we get
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where the QV α j are the entries of QV. Let us assume that the
resistivity and the skin depth are the same in all TCs and denoted
by ρTC and δTC, respectively. At sufficiently high frequencies, the
thickness and width of each TC are each much greater than δTC.
The surface current density being homogeneous over each strip,
the p.u.l. power dissipated in the TCs is
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The h.f. p.u.l. resistance matrix of the TCs, denoted by RHFTC, is
defined by PTC = I* RHFTC I, where I* denotes the hermitian
adjoint of I. Using (27) and (28), we may easily show that
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where we refer to KTC as the matrix of the equivalent inverse
widths of the TCs, the entries of KTC being given by 
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At this stage, the theorem on the connection of charge and
current densities can be used to obtain QV, since it tells us that we
may define QV α i as the p.u.l. electrostatic charge on the strip α
when the p.u.l charge of the TC number i is 1, the p.u.l. charge on
each other TC being zero. In other words, we can use
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A similar reasoning can be used to obtain the h.f. p.u.l.
resistance matrix of the GC, denoted by RHFGC , defined by PGC =
I* RHFGC I, where PGC is the p.u.l. power dissipated in the GC.
Using ρGC and δGC to denote the resistivity and the skin depth of
the GC, respectively, we find
(32)R KHFGC
RC

RC
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δ
where we refer to KGC as the matrix of the equivalent inverse
widths of the GC, the entries of KGC being given by 
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where ξ is an arc length on the boundary of the GC and where
n · Ei(ξ) is the electrostatic field component normal to the surface
of the GC when the p.u.l. charge of each strip is given by (31), the
integration path C extending over the boundary of the GC.

The conductors being reciprocal and passive, KTC and KGC are
frequency-independent real positive semidefinite matrices [9,
§ 7.1]. Thus, any diagonal entry of KTC or KGC is non-negative.
As an example, for the multiconductor microstrip interconnection
considered in Section V, using 336 matching points, we find
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In (34), all entries of KTC are nonnegative. However, for other
interconnections, we have obtained negative non-diagonal entries
in KTC. In all configurations for which we have computed KTC and
KGC , we found that KTC is strictly diagonally dominant [9,
§ 6.1.9], and that KGC is nonnegative [9, § 8.1].

VII. A MODEL FOR THE P.U.L. IMPEDANCE MATRIX

In this paper, the p.u.l. internal impedance matrix of the
interconnection, denoted by ZI, is given by ZI = Z !!!! jω L0 , where
Z is the p.u.l. impedance matrix of the interconnection. This
definition is not the one used in [2], but it is in line with the one
used in [10, § 2.8].  We clearly have ZI = 0 for lossless conductors.

Complying with Wheeler’s incremental-inductance rule [11], we
assume that, for frequencies high enough for the skin effect to be
well developed, the real and imaginary parts of ZI become
approximately equal and exhibit a f 1/2 increase with frequency.
Thus, the h.f. p.u.l. internal impedance matrix satisfies
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Wheeler’s incremental-inductance rule is not an exact law, but
it gives reasonably accurate values for a single conductor [2] [12].

Some authors assume that, in the Laplace domain, ZI is given by
the model ZS = A + s1/2 B where s is the Laplace transform
variable and where A and B are two frequency independent
matrices [7, § 5.3]. A and B can be determined such that ZS
complies with (35) and provides an exact dc resistance matrix.
However, ZS produces non-physical infinite dc self-inductances
and infinite or zero dc mutual inductances. Also, in the case of a
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single TC of circular cross-section having a coaxial
return path, for s = jω where ω is real, the model
ZS = A + B s1/2 produces large errors in the vicinity
of the skin-effect onset frequency [10, § 2.8].

In the same case of a single TC of circular cross-
section having a coaxial return path, another model
assumes that ZI is given by ZB = (A + B s)1/2. This
model is also compatible with (35) and it can
provide a good approximation of the exact solution
at all frequencies [10, § 2.8]. The accuracy of ZB in
the case of the circular symmetry is caused by the
fact that A and B can be chosen such that an exact
h.f. impedance, an exact dc resistance and an exact
dc inductance are simultaneously obtained.
Unfortunately, this miracle does not occur with
other single-TC configurations (for instance a TC
having a rectangular cross-section) and this model
using ZB does not lend itself to an obvious
generalization to n $ 2.

We have tried to define a p.u.l. internal impedance matrix model
combining the following properties: being exact at dc; complying
with (35);  producing finite and reasonable dc self- and mutual
inductances; and ensuring passivity. For want of a better approach,
we have used a trial-and-failure process in which the most difficult
part was the proof of passivity covered in Section VIII. This led us
to a new model for ZI, denoted by ZN and defined by

(36)Z Z Z ZN NR NTC NGC= + +

where, for the indices α and β ranging from 1 to n with α … β, the
entries of the matrices ZNR , ZNTC and ZNGC are respectively given
by
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entries of ZN versus frequency. Curve a: real part of ZN 11. Curve b:
 12. Curve c: real part of ZN 13. Curve d: imaginary part of ZN 11. Curve
art of ZN 12. Curve f: imaginary part of ZN 13.
where each square root symbol denotes the principal root, where
the p.u.l. dc resistances of the TCs are denoted by RDC 1 to RDC n,
the p.u.l. dc resistance of the GC is denoted by RDCGC, the p.u.l.
inductances LMAX 1 to LMAX n relate to the TCs and the p.u.l.
inductance LMAXGC relates to the GC.

Since it comprises several terms in the form (A + B s)1/2, the
model ZN can be seen as an extension of ZB, intended to provide
a causal and passive approximation for any configuration of the
TCs and GC.

The Fig. 3 shows some entries of ZN computed with (36)-(39),
for the multiconductor microstrip interconnection considered in
Section V. In this computation, LMAX 1 to LMAX n are equal to the
p.u.l. dc internal inductance LDC = 43.8 nH/m of the identical TCs,
computed using a closed-form approximation [13, eq. (30)-(31)].
In this computation, LMAXGC = LDC /10. In Fig. 3, we also assume
ρGC = ρTC = 17.24 nΩ.m and RDCGC = 0.034 Ω/m. We find that the
dc internal inductance matrix is given by
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We observe that ZN produces finite and reasonable dc self- and
mutual inductances. This is in contrast with the model ZS, in which
infinite dc self- and mutual inductances produce various artifacts,
which are not easy to detect and sort out in time domain
simulations. It can easily be shown that our model has the
following characteristics:
# ZN is exact at dc;
# ZN complies with (35) at frequencies sufficiently high to allow
us to neglect the 1 in each square root of (38)-(39) and to neglect
ZNR  in (36);
# the dc internal inductance produced by ZN α α ranges between
LMAX α and LMAX α + LMAXGC and, for α … β, the dc internal
inductance produced by ZN α β is finite.



VIII. PASSIVITY OF THE MODEL

We shall outline the proof of the passivity of our model ZN,
based on the following well-known theorem [3, § IV.D] [4].
Theorem on passivity. An impedance matrix Z(s) represents a
passive linear system if and only if
(i) each entry of Z(s) is defined and analytic in the half plane
σ > 0, where σ = Re(s);
(ii) Z*(s) + Z(s), where the star indicates the hermitian adjoint,
is a positive semidefinite matrix for all s such that σ > 0;
(iii) Z(s̄ ) = Z&&&&(s),  where the bar indicates the complex conjugate.

The conditions (i) and (iii) are clearly satisfied for the
impedance matrices ZN, ZNR, ZNTC and ZNGC defined by (36)-(39).
The condition (ii ) is addressed below.

If r and m1, ..., mn are real numbers, for any p 0 {1,..., n} let us
use Mp (m1, ..., mp) to denote the matrix

(41)M p p

p

m m

m r r
r

r
r r m

1

1

, ,L

L

O O M

M O O

L

d i =

F

H

GGGG

I

K

JJJJ
If for all α 0 {1,..., n} we have mα > r > 0, we can prove

inductively that, for any p 0 {1,..., n}, we have
(42)det , ,M p pm m1 0Ld ie j >

so that, all elements of a nested chain of n principal minors being
positive, Mn (m1, ..., mn) is positive definite by [9, § 7.2.5]. A
diagonal entry of ZNR + ZNR * is given by

(43)Z Z R RNR NR DC DCGCα α α α α+ = +2d i
This quantity is positive. A non-diagonal entry of ZNR + ZNR *

is given by
(44)Z Z R

sE
R

sENR NR
DCGC DCGC

α β βα+ =
+

+
+1 1

where α … β and where E is a positive real number. We see that
ZNR + ZNR * is in the form of (41), and it is possible to prove that,
if σ > 0, then for all α 0 {1,..., n}, we have mα > r > 0. Thus, we
conclude that the condition (ii) is satisfied by ZNR.

ú+\{0}being the set of positive real numbers, let us define a
function of s 0 ÷ and λ 0 ú+\{0}, by

(45)z s c s
c

,λ
λ

λb g = + −
F
HG

I
KJ2

1 4 1
2

where c 0 ú+\{0}. z(s, λ) appears 3 times in (38)-(39). It can be
shown that:
(iv) for σ > 0, we have Re(z(s, λ)) > 0;
(v) for σ > 0, Re(z(s, λ)) is an increasing function of λ.

Using (v) and the assumption that KTC is strictly diagonally
dominant (see the end of Section VI), it is possible to show that if
σ > 0 then ZNTC + ZNTC * is strictly diagonally dominant. Each
KTC α α being positive, by (iv) each diagonal entry of ZNTC + ZNTC *
is positive for σ > 0. We conclude that, if σ > 0 then ZNTC + ZNTC *
is positive definite by [9, § 7.2.3]. Thus, the condition (ii) is
satisfied by ZNTC.
By (iv), if σ > 0, ZNGC + ZNGC * is the product of a positive
constant and the positive definite matrix KGC , so that
ZNGC + ZNGC * is positive definite by [9, § 7.1.3] and the condition
(ii) is satisfied by ZNGC. Moreover, since

(46)Z Z Z Z Z Z Z ZN N NR NR NTC NTC NGC NGC+ = + + + + +∗ ∗ ∗ ∗

we find that ZN + ZN * is positive definite for σ > 0. Thus, the
condition (ii) is satisfied by ZN. We conclude that the impedance
matrices ZN, ZNR, ZNTC and ZNGC each represents a passive linear
system, and consequently a causal system [3, § III.C] [4].

IX. CONCLUSION

We have introduced a new technique to compute the h.f. current
distribution in a multiconductor interconnection. It takes into
account the crowding of currents at the edges of a conductor (edge
effect), and the influence of other conductors (proximity effect).
For conductors having an homogeneous resistivity, we have used
this technique to compute the frequency-independent KTC and KGC
which are used to obtain RHFTC and RHFGC.

We have defined a new model for the p.u.l. internal impedance
matrix. This analytical model is physically reasonable and
realizable in the sense that it is exact at dc, accurate at high
frequencies, corresponds to a finite dc inductance matrix, and that
it represents a causal and passive linear system. As far as we
know, no other analytical model combines these properties.

REFERENCES

[1] A. Cangellaris, “A Note on the calculation of the current distribution in lossy
microstrip structures”, IEEE Microwave Guided Wave Lett., Vol. 1, No. 4,
April 1991, pp. 81-83.

[2] A. Rong, A.C. Cangellaris, “Note on the definition and calculation of the per-
unit-length internal impedance of a uniform conducting wire”, IEEE Trans.
Electromagn. Compat., vol. 49, No. 3, August 2007, pp. 677-681.

[3] P. Triverio, S. Grivet-Talocia, M.S. Nakhla, F.G. Canavero and R. Achar,
“Stability, causality and passivity in electrical interconnect models”, IEEE
Trans. on Advanced Packaging, vol. 30, No. 7, November 2007, pp. 795-808.

[4] A.H. Zemanian, “An N-port realizability theory based on the theory of
distributions”, IEEE Trans. Circuit Theory, vol. 10, No. 2, pp. 265-274, June
1963.

[5] C.T.A. Johnk, Engineering Electromagnetic Fields and Waves,  John Wiley
& Sons, 1975.

[6] R.E. Collin, Field Theory of Guided Waves, 2nd ed., IEEE Press, 1991.
[7] C.R. Paul, Analysis of Multiconductor Transmission Lines, John Wiley &

Sons, 1994.
[8] F. Broydé and E. Clavelier, “A new method for the reduction of crosstalk and

echo in multiconductor interconnections”, IEEE Trans. Circuits Syst. I, vol.
52, No. 2, pp. 405-416, Feb. 2005.

[9] R.A. Horn, C.R. Johnson, Matrix analysis, Cambridge University Press,
1985.

[10] H. Johnson and M. Graham, High-Speed Signal Propagation — Advanced
Black Magic, Prentice Hall PTR, 2003.

[11] H.A. Wheeler,  “Formulas for the Skin Effect”, Proceedings of the IRE, vol.
30, No. 9, Sept. 1942, pp. 412-424.

[12] G. Antonini, A. Orlandi and C.R. Paul, “Internal Impedance of Conductors
of Rectangular Cross Section”, IEEE Trans. on Microwave Theory Tech.,
vol. 47, No. 7, July 1999, pp. 979-985.

[13] C.L. Holloway and E.F. Kuester, “DC Internal Inductance for a Conductor
of Rectangular Cross Section”, IEEE Trans. Electromagnetic Compatibility,
vol. 51, No. 2, May 2009, pp. 338-344.


	Title page
	Abstract
	I. INTRODUCTION
	II. LOSSLESS INTERCONNECTION WITHOUT DIELECTRICS
	III. SURFACE CURRENT DENSITY
	IV. SURFACE CHARGE DENSITY
	V. HIGH-FREQUENCY CURRENT DISTRIBUTION
	VI. HIGH-FREQUENCY P.U.L. RESISTANCE MATRIX
	VII. A MODEL FOR THE P.U.L. IMPEDANCE MATRIX
	VIII. PASSIVITY OF THE MODEL
	IX. CONCLUSION
	REFERENCES

	ghh: Proceedings of the 2011 IEEE International Symposium on Electromagnetic Compatibility, EMC 2011, Vol. 3, Long Beach, August 2011, pp. 877-882.


