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Abstract — We introduce the new concept of the modified partial
inductances of parallel conductors. For conductors of rectangular
cross-section, we obtain exact formulas for computing the modified
partial self-inductance and the modified partial mutual inductance.
These results can be used to obtain the dc per-unit-length self- and
mutual inductances which are needed in transmission line and
multiconductor transmission line models of lossy interconnections.

I. INTRODUCTION

In simulations for EMC or signal integrity assessment, it is often
adequate to use a uniform transmission line (TL) or a uniform
multiconductor transmission line (MTL) model for an
interconnection [1]. A parameter of the TL model is the per-unit-
length (p.u.l.) impedance of the 2-conductor interconnection,
denoted by Z', while the corresponding parameter of the MTL
model is the p.u.l. impedance matrix of the multiconductor
interconnection, denoted by Z'.

The dc p.u.l. inductance of the TL, denoted by L'DC, and the dc
p.u.l. inductance matrix of the MTL, denoted by L'DC, are
computed for the dc current distribution in the conductors of the
interconnection. This current distribution is homogeneous in the
case of straight homogeneous conductors.

The current distribution in the conductors may be considered as
frequency independent at any frequency f smaller than an onset
frequency fo at which the skin effect, the edge effect (crowding of
currents at the edges of a conductor) and/or the proximity effect
(modification of the current distribution caused by nearby
conductors) start to significantly modify Z' or Z'. Thus, for f < fo
we have Z' . R'DC + 2π f L'DC or Z' . R'DC + 2π f L'DC, where
R'DC is the dc p.u.l. resistance of the TL and R'DC is the dc p.u.l.
resistance matrix of the MTL. Consequently, when losses are taken
into account in a TL or MTL model, L'DC or L'DC is an important
parameter of the interconnection.

This paper is about a new approach for the computation of the
dc p.u.l. self-inductances, i.e. L'DC or the diagonal entries of L'DC,
and for the computation of dc p.u.l. mutual inductances, i.e. the
nondiagonal entries of L'DC. We will obtain exact formulas for the
case of conductors of rectangular cross-section which are typical
of configurations commonly found in printed circuit boards and
multi-chip modules, such as the ones shown in Fig. 1 and Fig. 2.

The traditional technique for the computation of dc self- and
mutual inductances involving loops made of straight segments
uses the concept of partial inductance applied to the straight
segments [2] [3] [4]. Unfortunately, the p.u.l. partial inductances
Fig. 1. Cross-section of a microstrip interconnection. TC is the
transmission conductor and GC is the reference conductor.

Fig. 2. Cross-section of a multiconductor microstrip interconnection.
TC1 and TC2 are the transmission conductors.

of parallel segments of infinite length cannot be defined, so that
partial inductance cannot be used to directly obtain L'DC or L'DC.
This question is covered in Section II. We then introduce the new
concept of the modified partial inductances of parallel conductors,
in Section III. For conductors of rectangular cross-section, exact
formulas for the modified partial self-inductance and the modified
partial mutual inductance are derived in Section IV. In Section V,
these results are used to obtain L'DC for the geometry of Fig. 1 and
L'DC for the geometry of Fig. 2. The case of a broad ground plane,
i.e. b 6 4, is discussed in Section VI because this assumption is
often used to derive the high-frequency parameters of the TL or
MTL using the method of images.

II. PARTIAL INDUCTANCE REVISITED

In this paper, we assume everywhere a permeability equal to the
permeability of vacuum, denoted by µ0. Let us consider a circuit
comprising n independent loops. Here, two loops may have a part
in common. We want to compute the inductance matrix between
the loops. Assuming the conservation of current in each loop, we
use Iα to denote the current in the loop α, in which a reference
direction has been defined. We use BLα to denote the magnetic



induction produced anywhere in space by Iα. In the quasi-static
approximation (in a narrow sense), the magnetic energy of the
circuit is, in the time domain, given by [5, § 5.12] [6, § 8.02]
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where the volume integral must be evaluated over all space,
denoted by V. The inductances are defined by
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In the case α = β, Lα α is the self-inductance of the loop α. If α … β,
Lα β =  Lβ α is the mutual inductance between the loops α and β.
The inductance matrix between loops is L = [L α β]. We have
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It may be shown that Lα β is given by
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where jLα denotes the current density associated to Iα , VLα denotes
the volume of the loop α, dvLα denotes a volume element of the
loop α and r is the distance between the volume elements.

We now consider that each loop comprises one or more
branches. Some branches may belong to two or more loops. Let us
number from 1 to N  the branches forming the loops and let us use
iα to denote the current in the branch α, in which a reference
direction has been defined. Let us use Bbα to denote the magnetic
induction produced anywhere in space by iα . In the quasi-static
approximation, the magnetic energy of the circuit is given by
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where the volume integral must be evaluated over all space, as in
(1). The partial inductances are defined by
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In the case α = β, mα α is the partial self-inductance of the branch
α. If α … β, mα β =  mβ α is the partial mutual inductance between
the branches α and β. Thus, we have
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It may be shown that mα β is given by
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where jbα denotes the current density associated to iα , Vbα denotes
the volume of the branch α and dvbα denotes a volume element of
the branch α. We observe that jbα is also the total current density
in the branch α.

A loop α is formed by the branches of the subset Nα d{1,..., N}.
For a branch p 0 Nα, let us define εα (p) by: εα (p) = 1 if the branch
p and the loop α have the same reference direction, εα (p) = !!!!1
otherwise. Using (3) and (7) we can prove that a simple relation
exists between the mutual and self-inductances of the loops and
the partial mutual and self-inductances of the branches:
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In the case where the branch α has a uniform cross section and
where an homogeneous and uniform current density exists in the
branch α, let us use abα to denote the area of this cross section.
Here, mα β is given by [7, eq. (2) and (3)] [8, eq. (12)] [9, eq. (2)]:
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where Pbα denotes the path of the branch α, Cbα denotes the cross-
section of the branch α, lbα denotes the vector displacement along
the path of the branch α, and Sbα denotes the surface element of the
branch α. In (10), the integrand of the surface integrals is the
partial mutual inductance between two filaments (i.e., conductors
of infinitesimal cross-section) given by the Neumann formula, and
this integrand is averaged over the cross-section of the two
branches. We note that, in the case where r may become arbitrarily
small (e.g., when α = β ), the singularity in the integrand does not
cause a problem for computing (10), as long as both branches are
of finite length. We also note that the result (10) becomes the
definition of Paul for partial mutual inductances [10] [11], in the
special case of filaments.

In the special case where the branches are straight conductors
of uniform cross-section, parallel to the z axis and extending from
z = 0 to z = L , the partial mutual inductance between the filaments
is given by [2, § 4] [3, § 8] [4, ch. 5]:
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where d is the distance between the filaments. In the case where
L >> d, we note that
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where  Í  means “asymptotically equivalent to”. Thus,
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It is consequently not possible to define a p.u.l. partial self-
inductance or a p.u.l. partial mutual inductance, as explained in the
introduction.

When we compute an inductance matrix L between loops each
containing two of said branches extending from z = 0 to z = L, we
find that (9) contains an equal number of terms with εα (p) = 1 and
with εα (p) = !!!!1 applying to the partial mutual and self-inductances
of said branches. We then find that, if L  is much larger than the
transverse dimensions of the loops, L is nearly proportional to L ,
because the terms in the form of (13) cancel out in (9). Thus, the
p.u.l. inductance matrix, denoted by L' = [L' α β], may be defined
as

   (14)′ =
→∞

L Llim
L L

because this limit exists and is nonzero. To obtain  (11) to (14), we
only assumed straight parallel conductors of uniform cross-section
and an homogeneous and uniform current density. Thus, all results
of this Section II are applicable to the computation of L'DC. 

III. MODIFIED PARTIAL INDUCTANCES

Formulas providing exact partial self-inductances and partial
mutual inductances for parallel conductors of uniform rectangular
cross-section are available [7] [8] [9] [12]. Unfortunately, they
become numerically unstable when the length of the
interconnection, denoted by L, is large [12]. Consequently, it is not
possible to directly use (9) and (14) to accurately compute L'DC.

To avoid this problem, we define the modified partial
inductances of the parallel conductors α and β, denoted by m'α β,
in the following way
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where L 0 is an arbitrary length. We note that this limit exists and
is nonzero. When we compute L'DC = [L' DC α β] between loops
each comprising two parallel conductors extending from z = 0 to
z = L and regarded as a branch, we obtain
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where the loop α contains two branches extending from z = 0 to
z = L, the branches of the subset N 'α d{1,..., N}. To obtain (16),
we have used (9), (14), (15), the fact that (9) contains an equal
number of terms with εα (p) = 1 and with εα (p) = !!!!1 applying to
the partial mutual and self-inductances of said branches, and the
fact that the other branches of the loop have a zero contribution to
the loop inductance as L 6 4. Thus, an entry of L'DC is easily
obtained if we know the relevant modified partial inductances.
Note that the result of (16) is independent of L 0 used in (15).
A modified partial inductance may be determined as follows.
Using (10) and (15), we get
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Using (11), we obtain
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which is also equal to
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The term comprising the 4-fold integral in (19) is the natural
logarithm of the geometrical mean distance defined by Maxwell,
normalized with L 0  [3, § 9] [4, ch. 3] [13, § 691].

IV. CONDUCTOR OF RECTANGULAR CROSS-SECTION

The modified partial self-inductance of a straight conductor of
uniform rectangular cross-section may be computed using the
formula given by Maxwell for the geometrical mean distance of a
rectangle from itself [13, § 692]. Let Wα be the width and Tα be the
thickness of the rectangular conductor α. The result of Maxwell is:
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If we insert (20) in (15), we obtain the exact formula
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This exact result may also be derived from the exact partial self-
inductance formula of Ruehli [8, § 5] in the form given by Wu,
Kuo and Chang [9]. For a square cross-section of side Sα , we get
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The modified partial mutual inductance between two conductors
of uniform rectangular cross-section having an horizontal side
could in principle be computed using the exact formula for the
geometric mean distance between symmetrically placed rectangles
established by Gray [14, pp. 296-303] and revised by Rosa [15,
§ 3], or the more general exact partial mutual inductance formula
of Hoer and Love [7, § 2.5]. However, the former does not cover
all the cases which we need to address and the latter does not look
very convenient for a direct implementation of (15). For this
reason, we have used the exact partial mutual inductance formula
of Zhong and Koh [12], which leads to a simple result. 

Let L α > 0 be the length, Wα > 0 be the width and Tα > 0 be the
thickness of the conductor α of uniform rectangular cross-section.
The axis of the conductor, along which the current flows, is
parallel to the z axis and the reference direction is the direction of
increasing z. The conductor α extends from x = xα to x =  xα + Tα ,
from y = yα to y =  yα + Wα and from z = zα to z =  zα + L α . For this
conductor, we define the three vectors
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According to Zhong and Koh, the partial mutual inductance

between the conductors α and β is given by
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where R (z, y, x) denotes the partial self-inductance of a conductor
of uniform rectangular cross-section of length z, width y and
thickness x.
 The case of interest for computing the modified partial
inductances of parallel conductors involves two branches
extending from z = zα to z =  zα + L α so that we must use zα =  zβ
and L  = L α = L β. In this case, we have
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Using (15), (27) and (29), we obtain
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The modified partial mutual inductance formula (30) comprises
16 terms containing R ' (x, y) defined by (22). In the case α = β,
only 4 terms are nonzero and the nonzero terms are equal, so that
(30) and (31) give the same result as (21).

V. COMPUTATION OF DC P.U.L. INDUCTANCES

In the case of a uniform interconnection having n transmission
conductors (TCs) and a reference conductor (GC), the p.u.l.
inductance matrix is of size n × n. We number the TCs from 1 to
n. The TC number α 0 {1,..., n} corresponds to the branch α and
forms the loop α with the GC. The GC corresponds to the branch
n + 1. The p.u.l. inductance matrix is given by (16), (21), (30) and
(31), the result being independent of the arbitrary length L 0. 

As a first example, we have computed L'DC for the
interconnection of Fig. 1, for which n = 1. By (16) we have
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The curve A of Fig. 3 shows L'DC computed as a function of b,
for t = h = a = w = 50 µm, using (32) and (33). The curve B of Fig.
3 shows the high-frequency (h.f.) p.u.l. external inductance for the
same configuration, denoted by L' 0 and computed as explained in
§ V of [16], by the method of moment using pulse expansion and
620 matching points. We observe that L'DC and L' 0 are completely
different. In particular, as b increases above w + 2(h + t) =
250 µm, L' 0 quickly approaches the limit obtained for an infinite
ground plane, equal to 317.5 nH/m [16].

As a second example, we have computed L'DC for the
interconnection of Fig. 2, for which n = 2. By (16) we have, for
α 0 {1, 2}

(34)′ = ′ + ′ − ′L m m mDCα α α α α33 32
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The curves A and C of Fig. 4 show the entries L'DC 11 =  L'DC 22
and L'DC 12 =  L'DC 21 of L'DC , respectively, computed as a function
of b, for t = h = a = w = d = 50 µm, using (34) to (36). The curves
B and D of Fig. 4 show the entries L' 0 11 =  L' 0 22  and L' 0 12 =
L' 0 21 of the h.f. p.u.l. external inductance matrix of the same
configuration, computed by the method of moment using pulse
expansion and 700 matching points. We see that L'DC and L' 0 are
completely different. In particular, when b increases above
2w + d + 2(h + t) = 350 µm, L' 0 quickly approaches the limit
obtained for an infinite ground plane.

VI.  ASYMPTOTIC EXPANSIONS FOR A BROAD GROUND PLANE

It can be shown that, for y 6 4, we have
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Using this result, it can be shown that, as b 6 4, an
approximation of L'DC  given by (32) and (33) for the
configuration of Fig. 1 is
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The curve A of Fig. 5 shows the exact value of L'DC computed
Fig. 3. For the first example, dc p.u.l. inductance L'DC  (curve A) and
h.f. p.u.l. external inductance L' 0 (curve B) as a function of b.

Fig. 4. For the second example, L'DC 11 (curve A), L' 0 11 (curve B),
L'DC 12 (curve C) and L' 0 12 (curve D) as a function of b.

Fig. 5. For the first example, exact dc p.u.l. inductance L'DC  (curve
A) and the approximation for large b (curve B), as a function of b.

as a function of b for t = h = a = w = 50 µm, using (32) and (33).
The curve B of Fig. 5 shows the approximate value of L'DC given
by (38) for the same configuration, which provides an oblique
asymptote of the curve A in the semi-log plot.



Fig. 6. For the second example, exact L'DC 11 (curve A) and L'DC 12
(curve C) and the corresponding approximations for large b (curve
B and curve D, respectively), as a function of b.

Using (37), it can also be shown that, as b 6 4, an
approximation of the entries L'DC 11 =  L'DC 22  and L'DC 12 =
L'DC 21 given by (34) to (36) for the configuration of Fig. 2 is
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The curves A and C of Fig. 6 show the exact values of L'DC 11
and L'DC 12, respectively, as a function of b for t = h = a = w = d =
50 µm, using (34) to (36). The curves B and D of Fig. 6 show the
corresponding approximate values given by (39) and (40) for the
same configuration, which provide oblique asymptotes of the
curves A and C in the semi-log plot.

VII. CONCLUSION

We have introduced the new concept of modified partial
inductances of parallel cylindrical conductors, which can be
computed for any cross-section of the conductors and used to
directly obtain L'DC or L'DC. In the special case where this cross-
section is a set of rectangles having an horizontal side, we have
provided exact analytical expressions for the modified partial
inductances, so that the exact L'DC or L'DC can be easily obtained.
For two examples, we have shown that L'DC and all entries of L'DC
become large and are equivalent to µ0 ln b /(2π) as b 6 4. Thus,
L'DC and L'DC are only defined for a GC of finite width. We have
also obtained a more accurate asymptotic expansion of L'DC and
L'DC , for a wide reference conductor.

The fact that dc p.u.l. inductances become large as b 6 4 is
surprising because it differs so much from the behavior of  h.f.
p.u.l. inductances. This fact follows from an homogeneous dc
current distribution in the GC, for which most of the current in the
GC flows at a distance of the TC which increases with b.

An analytical and inherently passive model for the p.u.l.
impedance matrix of a MTL has recently been introduced [17]
[18]. The model parameters which characterize the high-frequency
behavior of the MTL can be obtained at a low computational cost,
using an accurate h.f. current distribution which takes into account
the skin effect, the edge effect and the proximity effect. This
model also comprises other parameters which determine the
behavior of the MTL at low frequencies. We plan to use the results
of the present paper to clarify the meaning of these parameters.
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