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It is a well established fact that the
behaviour and performance of linear filters
strongly depend on the impedance connected
at its input and output. This observation is
of utmost importance when dealing with power
line filters.

Classically, the characterization of a
linear filter is done with the use of a
quantity known as insertion loss. We first
introduce this quantity together with three
other important concepts, namely the total
attenuation, the absorption attenuation and
the mismatch attenuation.

We then define what we call the worst
case at the output and the worst case at the
input of the filter. We show how to compute
insertion loss and attenuations in a worst
case.

The minimum attenuation of the filter is
the absorption attenuation in the worst case
(at the output) and is also the total
attenuation in the worst case at the output
and at the input.

The input impedance domain of a filter is
defined and shown to be a convenient tool to
understand the filter’s behaviour and to
compute the mismatch attenuation in a worst
case.

We show that in many cases, the most
relevant quantity for the study of a power
line filter is the total attenuation, which
can be most easily assessed with the
combined use of minimum attenuation and
input impedance domain.

We compare these new developments in
power line filter theory to former studies,

which involved the worst case insertion loss
or minimum voltage attenuation.

INTRODUCTION

This paper deals with the theory of
specification, design and characterization
of linear filters connected to loads or
sources of unknown impedances. This topic is
especially relevant to the study of power
line filters used to obtain electromagnetic
compatibility from equipment connected to
the power network.

We know that circuit theory allows one to
analyze and synthesize complex linear
filters, and thus makes it possible to meet
almost any needs of electrical or
electronics engineers. However, the elegant
and subtle theory involved in those design
techniques, known as classic filtering
theory, is based on the knowledge of the
load and source impedances to be connected
to the filter wunder consideration [1].
Moreover, methods used for synthesis also
require those impedances to be purely
resistive.

Unfortunately, power line filters are
meant to be inserted between an electrical
appliance and a power network: power
networks exhibit impedances which, above
some 10 kHz, are usually time varying,
frequency dependant and reactive [4], [5],
[6], and the behaviour of appliances may
have a similar complexity. As power and
voltages at the input and output of the
filter strongly depend on those impedances,
it becomes apparent that a filter cannot be
characterized with a single constant and
real parameter at each frequency.

The use of the insertion loss of a
filter, as measured between a 50 Ohm source
and a 50 Ohm load, for the characterization
of a power line filter in their stop band is
therefore meaningless from an EMC point of
view. This point is now recognized in most
major standards on filters [15], [16], [17],
but has been disregarded by many authors,
EMC engineers, and filter manufacturers:
even though alternative <characterization
means have been proposed, their use remain
unusual.

WORST-CASE METHODS
FOR FILTER CHARACTERIZATION

Two concepts have been proposed for the
characterization of ©power line filters,
namely : the minimum voltage attenuation
{21, [91, {16], the worst-case insertion
loss [3]1, (41, [7), [10]. We will carefully
define those quantities in mathematical
terms along the paper, but for our present
purpose, it is sufficient to say that they
both resort to the notion of worst case
behaviour:

- in the stop band of the filter, the
greater voltage attenuation and insertion
loss, the better the filter,

- the "worst-case"” or "minimum" value of
those quantities correspond to their
smallest possible value when the load or
source impedance take on all possible values
in the positive real part half complex
plane.

In the following, three other new worst-
case quantities will be introduced, together
with the two classical ones.



ASSUMPTIONS AND NOTATIONS

Let us consider a linear, passive and
reciprocal two-port. We will use the
notations of figure 1, in which the source
connected to the input of the filter is
sinusoidal, of radian frequency (75
linear, of open circuit voltage Us , and
has an impedance Zs . The load
will also be assumed linear and has an
impedance ZL .

Figure 1 : Notations

The filter under study is, at any radian

frequency (o , completely characterized by
its chain matrix A, which is defined by:
7, Vs
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where Vg , 1 "V and i, are complex
rms values. %he coefficients of the chain

matrix are also complex numbers, and we
write
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We may then define several powers:

the input power, PS = Rﬂ (VSTS) e (4)
the output power, P,_ = Re (’U]_ LL.) .. (5)
the available power, F‘mx ,which is the
maximum power which the source may produce
_ les|? (6)
MAX 4 Ra (Zs)
the power without filter, F@F , which is

the power received by the load when it is
directly connected to the source

Pur = |&l? Mz_qz ()
[Z2,+Z]

INSERTION LOSS
AND VOLTAGE ATTENUATION

Insertion loss I is defined by
P e (8)
Po
this expression being equivalent to
I = Vwr .o {9)
v

where VwE is the voltage across the load
when it is directly connected to the source.
A straightforward calculation yields

T.- a,Zs+anZ+a, 225 +Qu | | (10)
Z, + Zg
This formuls shows explicitly that I is a
function of Zg and Z . For this reason,
we will sometimes write
I = I(Zs,2.) co (11

Insertion loss versus frequency data,
usually presented on a plot, are the most
widely used way of characterizing a filter.

Historically, Mil Std 220 A [15] proposed
the evaluation of power line filter through
an insertion loss measurement in a 50 ohms
system. The same standard was later (1978)
modified in response to the outrage of many
prominent EMC experts: it was admitted that
the 500, -insertion loss did not correctly
characterize the filter. Nevertheless this
technique was kept as a quality control
tool, and no replacement was offered.

Voltage attenuation dv is defined as

Vs
oAy = | — Loa{12)
v Yo
this expression is easily transformed into
a
«, = la,, - 2 .o (13)
v 22 ZL

which shows that o, 1is a function of Z
but not of Zg .

POWER ATTENUATIONS

We will now introduce three (more or
less) new quantities.

The total attenuation A is defined
as P
A = MAx co(14)
P

it can be computed from the A matrix with

A - lauz_s"'az:zt.*‘azuzl.zs +a,; ’

... {15)
This formula shows that .R is a function
of Zg and Z , which we will occasionally
write

A = A(z,2.) oo (16)
The absorption attenuation JE is defined

as J% ) Pe
- P (1T

and can be computed from the A matrix with

RL([an—2103,]E;:;i::7z:j) i

2= ... (18)
Re (20) .

where it becomes apparent that J} is a

function of Z but not of Zg , We will

therefore sometimes write

£ - &(z) c(19)

The mismatch attenuation SB is defined

3 - Prax ... (20)
Ps

as




and can be computed with
e (21)

Sg _ Iau.zs +a2%¢ -8y 2,2 ~a, ‘

2 JRQ.(ZS) JRA (Ean‘z(.au][‘i.llil.-&lz])

This quantity appears to be dependant on
both Zg and Z , which will allow us to

write
D= R(zs,20) . (22)

when necessary.
The three power attenuations presented
above are all greater than 1, and are

related by:
Az=R.8 ... (23)

None of those three attenuations is the
attenuation @ commonly used in the theory
of linear network [1], [8], and defined as

-a
e - l52|| ...(24)

where Sz, is the transmittance between the
source and the 1load, relatively to the
reference resistances R, and Ry .

The total attenuation R\ is more
general, and satisfies
[«
RAR=z-e Rig=083%a .. (25

when source and load impedances are purely
re31st1ve and respectively equal to 2} = R1
and Z,_ = Ra

For Z = ZL , it can be seen that

A=1I 0. (26)

and there is therefore no need to
distinguish between insertion loss and total
attenuation when source and load are purely
resistive.

INSERTION LOSS AND ATTENUATIONS
IN A WORST CASE

For all five quantities introduced
{insertion loss, voltage attenuation and
power attenuations), and at frequencies

inside the stop band of the filter, the
greater a given quantity, the better the
filter. If load or source impedance are made
random, the worst case will therefore happen
when a given gquantity reaches a minimum
value.

As impedances only take on values with a
positive real part, we find it convenient to

note
Cy=R++4R  ...27)

the positive real part half complex plane.

For a quantity X dependant on Z , but
not on Z s (in the present instance X is
either o, or f¥ ), we define X in the

worst case as

X v =Im{{x(z,_)| Z,_eC,_} ... (28)

and we call it minimum X.

Thus, %y mim is the minimum voltage
attenuation. The use of this guantity is
advised in a C.I.S.P.R. standard [16].

In a similar way, miy 15 the minimum
absorption attenuation. As this quantity
exhibits very particular properties, we will
simply call it minimum attenuation and use
the symbol M instead of Min

M=z In\{ {:ﬁ(z‘_)lZg_é 64_} v (29)

For a quantity X dependant on both zs

and Z, (in the present instance X is
either A or 8 or I ), we define X in
the worst case at the input as

X (ZJ)= If'{{ ZSIZ,_IZSGC} .. (30)
and X in the worst case at the output as
X,(Zs)= Im{{X(Zs,ZJlZ,_e C*‘]I ce (31

We notice that X; is a function of 2,
and that X, is a functlon of Zg It is
therefore p0551b1e to consider X in the
worst case at the input and at the output,
which is a constant and is denoted by xnuh

CALCULATION OF WORST CASES

Calculation of insertion loss 1in the
worst case at the input and of insertion
loss in the worst case at the output was
already addressed by Audone and Bolla [10].

Calculation of minimum voltage
attenuation was already carried out by
Hinton et al, and by Jarvis and Thomson [2],
[8]. Their calculation is contained in
C.I.S.P.R. 17 [16]. A computer program was
also dedicated to this calculation [11],
[12], this work being done by Jones et al.

Calculation of total attenuation in the
worst case at the output turns out to be
relatively simple, and one finds

R, (2))= («a ([au-: azgst)a..z's —Erd))'/z o (32)

From the symetry of equation (15) it is
obvious that total attenuation in the worst
case at the input is obtained by
interchanging a4, and ZS with a and
ZL in (32):

_P\.t (’Z,,) - ( [q“_ ZLdzn][auia_' alz]))'/z ... (33)
, Re (22)

Comparing (18) and (33) proves that

R(zs)= A (%) .. (34)
M= -P\mam ... (35)

and also

Calculation of minimum attenuation is
slightly more complex. We first introduce
four new parameters:

R = bb,+¢c,+b b+, Cpy ...(36)

2= Cusz+L’uClz-5..sz.-‘—zlbn. »0 0 (37)
m= - (!’znl"zz* szczz) - (38)
mz= - (byba+ cnciz) ... (39)

One can prove that those coefficients
satisfy the following relations:

R ~b4mn+ £%=1 e (40)
m2> 0 .. (41)

n >0 Co.(42)
bmn-4*> 0 e (43)

Minimum attenuation is then given by:

Jor fomn 25




Calculation of mismatch attenuation in
the worst case at the output could be made
directly from the A matrix coefficients. We
won’t give the (quite complex) corresponding
formulas here, as the same point can be
addressed more easily with the Input
Impedance Domain concept.

INPUT IMPEDANCE DOMAIN

The Input Impedance Domain (IID) of a
linear filter is defined as

= {Z"_(ZL)IZLQ C+} ... (45)

!
where Z o is the input impedance of the
filter, as given by

Z?: = Z,oa,,-a,

...(46)
a, -2 aq
The IID is either a half plane or a disc:

- if a, = 0 , then a, &y, = 1 , and S)
is obtained by translating d:+ by the
positive amount ' b

-22s50 cea(47)
by,
in the direction of positive real part.

- ifap X0 and a, =0, then J
is obtained by translating ﬂ:+ by the
positive amount Caz

- —30 . (48)
(=1}

in the direction of positive real part.

- if ag X0 and a, !\O.wedefinee
and @ Such that

gelo2r[ amd -02.—1%(6 o 149)
" ge[ 1] amd 22t et?

a, “la ... (50)

if (f-"'—, then é) is obtained by
translatxng (:+ by the positive
amount

-2 50 ... (51)
T Ca :
if "P*it"i' , then P is the disc of
center _36
— e az,
= —m———— o —_ ...(52)
ZIauquXD(fl Q,,
and radius
1

07 Mm@ Y

As we see, the input impedance domain may
be plotted on a complex plane, whose real
axis represents the input resistance, and
the imaginary axis the input reactance. The
value of mismatch impedance in the worst
case at the output is obtained by
considering the appropriate intersection of
the IID with circles of constant mismatch
attenuation.

A circle of constant mismatch
attenuation has a center

(8= R«.(?_q)(ZsT ) ngzs)..-(54)

and the radius

¢'(Br) = Me(2)By \‘B; -l ss)

The value of the smallest 31‘ whose
circle of constant mismatch attenuation

intersects the 11D, is the mismatch
attenuation in the worst case at the output.
This method of assessing this latter
quantity is both simple and efficient.

LOSSLESS FILTERS

It can be shown that the 1IID of a
lossless filter is €, . This implies

S, =1 ... (56)

and as the absorption attenuation is
necessarily equal to 1, we obtain

A, =1 i (57)

This last expression shows that lossless
filters are of little help for power line
filtering, where the worst case may in fact
be realized.

EXAMPLE OF COMPUTATIONAL RESULTS

We investigated the behaviour of the
filter shown in figure 2, known as [13] the
series parallel dissipative low-pass filter.

2
1= 504 H RI Re
R, = 39a c
C = Q4/LF I
Figure 2 : The series parallel dissipative

low-pass filter.

Our calculation were carried out with the
FILTREXPERT package software, and some
results are shown on figure 3 and 4.

Figure 5 shows a chart containing the
circles described by (54) and (55). When the
input impedance domain of figure 4 are drawn
on this chart, determination of 30(5030 is
obtained by looking at the intersections of
the circles of the chart, and input
impedance domain, as shown on figure 6.

Figure 3 : 50 system insertion loss (a),
total attenuation in a worst case f\.(SDJL)
(b) and minimum attenuation (c¢) of the

series-parallel dissipative low-pass filter.
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Figure 4 : Input impedance domain and

mismatch attenuation of the series-parallel
dissipative low-pass filter.

601

0 o

20 1

-20 4

-0 4

Figure 5 : Circles of constant B, (50a) .

10 MrdXs \

N\
~60 1508 m;e\~ LXY )
Figure 6 : Input impedance domain -drawn on
the chart of figure 5. One can read that
at 178 k rd/s RBo(son) << 0.1 dB,
at 1 M rd/s Bo(Soa) = 1.0 dB,
at 10 M rd/s Bo(S0oa) ~ 0.3 dB.

In the present instance, the smallness of
the mismatch attenuation in the worst case
at the output explains the close values of
total attenuation in the worst case at the
output and minimum attenuation, as observed
on figure 3.

DISCUSSION

We contend that the main concern of an
EMC engineer is the maximum power at the
output of a filter. For reduction of
emission level, one has to make sure that
the output power level of the power line
filter does not exceed a certain value (it
is clearly impossible to use voltages for
this purpose). For reduction of
susceptibility it is possible to use either
the maximum power 1level or the maximum
voltage at the output of the filter.

Design of power 1line filters should
therefore be made with two worst-case
theoretical tools: total attenuation in the
worst case at the output (or at the input)
and minimum voltage attenuation.

For the characterization of power-line
filter the direct use of R or present
the following drawback: they are functions
of an impedance, and therefore impractical
to manipulate on data sheets.

On the other hand, it is possible, and
easy, to use minimum attenuations and input
impedance domain as descriptive tools, as
they depend only on the filter itself, and
can be plotted with frequency as variable.
Once those two gquantities are known it
becomes possible to evaluate a pessimistic
value for total attenuation in a worst case,
as given by

f\((zl)'é M ...(58)
P\o(ZS)>/ M. 30(25) ...{(59)

We therefore recommend that minimum
attenuation and input impedance domain be
used for the characterization of power line
filters.

CONCLUSION

Our hope is that designers and EMC
engineers will become more and more aware of
the specific aspects of power line filter
theory, and particularly those related with
the worst case behaviour of filters. The
bases of this theory are not new, but we
have presented here some improvements to it,
in introducing the caoncepts of total
attenuation in a worst case, of minimum
attenuation, of mismatch attenuation in a
worst case, and of input impedance domain.

Those complements to the theory, in
addition to early works, offer the EMC
engineer an alternative approach to

conventional and incorrect design Dbased
solely on 50 Ohm insertion loss.

It has been stated that the sole use of
50 Ohm system insertion loss, though not
rigorous, was nevertheless a good
approximation of what would happen in the
field: this belief is completely unfounded.
This kind of calculation, even used with
"generous" safety margins often leads to
unsatisfactory performance.

Others contend that rigorous worst case
theory is too complicated to be dealt with,
and this opinion even appeared in a recent
standard [171].

Our opinion and experience is that
correct work is both feasible and
economically worth doing.
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