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Original text of the paper
“The Basis of a Theory for the Shielding by Cylindrical Generalized Screens”
with a few post-publication corrections in red — 3' edition

Frédéric Broydé, member, IEEE and Evelyne Clavelier, member, IEEE

Abstract— Two new concepts applicable to cylindrical generalized screens are introduced: standard
responses and standard excitations. The standard responses allow the description of any currentand
charge distribution on the screen. For a given generalized screen’s cross-section, they can be derived
from the complex potential of a simple electrostatic problem. The standard excitations are
electromagnetic field configurations suitable for a description of fields created by sources external
to the screen. All standard excitations are explicitely computed in the case of a circular cylindrical
shield. We present only three standard excitations for the case of the elliptical cylinder, and for the
case of a rectangular cylinder.

|. INTRODUCTION

We have previously presented [1] the first results of an analysis of shielded multiconductor cable:
with respect to their shielding performances. This early work introduced the concept of five types of
coupling between an external electromagnetic field and the cable. Our paper stated that the set of "type
coupling" considered was not complete, because an infinite series of type of couplirecessary to
describe the effect of charges on the the screen. We later decided [2] to refer to the five types of couplir
defined initialy, as the fivenaintypes of coupling, because Wwelievedthey indeed gave an acceptable
picture of the behaviour of most cables in many circumstances. However we were not able at that time |
give a complete list of the coupling types and their associated parameters.

After our first article on this subject, we wrote several papers that improved our analysis, and alsc
presented new experimental methods and results: a "parallel H-field probe" was designed and manufactut
for the measurement of the parallel transfer impedance [2] [3] , and an "axial H-field probe" was built for
the measurement of the axial transfer impedance [4] [5]. Interesting experimental results were also obtain
with a rectangular TEM cell [1] and later with a GTEM cell [5].

Extensions of this work led us to a theory of the shielding performances of non-ideal cylindrical
shields. The present paper is focused on two basic concepts of this theory, applicable to generalizs
screens: standard responses and standard excitations. These concepts are somewhat general becaust
allow a valid description of the behaviour of a shield, that can be implemented without restriction:

— on the nature of the excitation, any field structure being taken into account;
— on the shape of the shield, which is a cylinder of arbitrary cross-section;
— on what is inside the shield.

In this paper, a shield or screen denotes a structure of conductive material (electric or magnett
conductor) intended to reduce the penetration of electromagnetic fields into an assigned region. Th
structure is often very complex, for instance in the case of a braid or of a metallic tape wound around
multiconductor bundle. This is why we will often refer to a generalized screen containing the real screer
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A generalized screen or generalized shield (see[6], or 8 10.2 of [7]) is defined as any combination c
screens (made of electric conductor or magnetic conductor) and exclusion volumes, providing
electromagnetic attenuation. Exclusion volumes are defined as volumes which may not contain field sourct
or conductors, potentially responsible for harmful coupling in the problem of interest. In practical
computations, exclusion volumes are considered empty. In this paper the generalized screen will always
a closed and connected set, and its boundary will be the union of a cylindrical internal boundary and of
cylindrical external boundary, having no point in common, the latter surrounding the former. The internal
boundary of the generalized shield surrounds a connected open set, later on referred to as the "volul
inside the generalized screen”. The points of space not included in the volume inside the external bounda
are said to be in the "volume outside the generalized screen”, considered an open set. Thus, the volu
inside the generalized screen, the volume of the generalized screen, and the volume outside the generali
screen cover all space and any two of them have an empty intersection.

[I. CHARGES AND CURRENTS ON THEGENERALIZED SCREEN

Throughout the papets = (g, g, &) is a right-handed basis of orthogonal unit vectors. An origin
O being chosen, the (rectangular) coordinates with respéegar@x, y andz, and the generalized screen’s
external boundary will be a cylindei; oriented along the £axis (see Fig. 1). The intersectib(g,) of
this cylinder and a plane of equatibsr z, in (43, is not necessarily circular, but it is a closed continuous
curve. At any point oz, we define a local right-handed bass €, e,) of orthogonal unit vectors: the
unit-vectore, is everywhere normal t6: and pointing outward, and the unit-veatprs tangent to the
surface and perpendicularépande,. The curvilinear coordinate’ on everyl'(z,) curves is chosen in
such a way that it is dimensionless, that it is a bijective mapping framn] to I'(z), and that the
u? = constant curves ofi. are straight lines parallel ®. (U? 2) is therefore a system of orthogonal
curvilinear coordinate on the cylind€y.. One can extend the definition of the coordindt® R, so that
the map that associates a coordinét® the corresponding point dr(z,) becomes a periodic function
of period Zt.

We can obviously derive curvilinear coordinai@s\{, z) for the entire space, by properly choosing
a family of cylinders&(u), one cylinder of the family being the external bound&gyf the generalized
screen and another matching the internal boundargf the generalized screen, each cylinder of the
family having at any point a local right-handed basise,, ) of orthogonal unit vectors and a system
of coordinate , 2) built as above, and subject to the condition that the infinitesimal line element is:

dr =he,du'+ he,df +e dz (1)

One can see th&t andh, are not dependent an Also, the external and internal boundaries of the
generalized screen being cylinders of the family, they can respectively be described by the efeations
u'z andu' = u',. The Fig. 1 illustrates our choice of coordinates, and shows a point M d@freay
coordinatesu,,, U%,, Z,). One can build an infinity of different such curvilinear coordinate systems (for
instance using problems of electrostatics for whifsttonstant surfaces are equipotentials).

In the first half of the following discussion, up to eq. (15), we shall only consider time-domain
guantities.

If the generalized shield has a perfectly conducting external boundary, charges can only appear c
this external boundary when all electromagnetic field sources are in the volume outside the generalize
shield. Otherwise, charges may appear on the generalized shield's internal or external boundaries, and &
inside the generalized shield (we may for instance have defined the generalized shield of a cable as mze
of a copper braidnda polyvinyl chloride jacket). The charge dengittherefore depends on the three
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coordinates!*, U?, z, and we shall regard it as a distribution. An integration of the charge deositye
generalized shield thickness gives a quantity that has the same unit as a surface charge. However, it v
be more convenient to introduce the "local per-unit-length charge density” (in C/m) that we will denote
p., and define as:

p(w.2)=2n] phhdd )

where the path of integration is a portion ofia= constant and z = constant line.

In the case of a perfectly conducting boundany*at u'c and if all electromagnetic field sources
are in the volume outside the generalized screen, charges are only present as a surface chapge densi
on the external boundary, apds given by:

p(ut, >, 2 h dd=pg( &, 25( b- @)d b 3)

whered is the Dirac distribution. We therefore have in this special case:

- P
Ps= o @

Returning to the general case, we notice that, considered as a funcfign @ periodic of period
27 and can therefore be expanded in a Fourier series:

P9 = puo(2+RY S o (3 exh ind) ®

where the coefficienp, , is real, where fon > 1 the coefficienp,_,, is complex, and where =1 with
Im(i) = 1.

It is important to notice that the total per-unit-length charge carried by the generalized screen it
given by:

Jf b dii = [ o dib=p, ©

shield

If the generalized shield has a perfectly conducting boundary, a surface current results. Otherwis
such a surface current can not take place, but an integration of the currentjdeugtged here as a
distribution, on the generalized shield thickness (with respect to the varipbiees a quantity that has
the same unit as a surface current. However, it will be more convenient to introduce the "local currer
vector” (in A) that we will denotg, , and define as:

iv =lvr€ +]voh, &1 €, (7)
with
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i = 2nhlju“fh2j.e1 du’

jvo =21 “hyje, du’ (8)

i, = znj;fhlhz j.e,dut

where the path of integration is a portion offa= constant and z = constant line.
In the case of a perfectly conducting boundany*at u'c and if all electromagnetic field sources

are in the volume outside the generalized screen, there is a surfacejglomnetiite external boundary,
andj is given by:

j(ul, u?, z) hdd :js( g, ;5( b- él) dt (9)
whered is the Dirac distribution. We therefore have in this particular case:

= IV

21 h,

s (10)
In this case and if the shield is isolatigd = 0. This will be approximately the case for good shield,

isolated. Howevex, , should not be ignored for imperfect shields: the porpoising phenomenon (see [7],
8 9.4.6) is precisely caused by such currents.

Returning to the general case, let us expand the two last coordingt@s @f-ourier series in the
following manner:

jvo(UZ’ Z) = jvoo(2) + R i Jvod2) eXFQ inuz)} (11)
iya(U?,2) = iyao(2) + Re{i ivad 2 exi inuz)} (12)

where the coefficientso , andiy, , are real numbers, where for- 1 the coefficients,, , andi,, , are
complex, and where 2 =1 with Im(i) = 1.

We note that the total current flowing along the shield axis is:

JI b ie, it diE =L [ diE = (13)

shield

We know that for a vectdf of curvilinear coordinates=(, F,, F,) the value of the divergence is
given by:
1

OF =——
hh,

0 0 0
| (hR) + 2 (h) 2 (), (14)

The equality diy + dp/ot = O for the conservation of charges in time domain, once multiplied by
h,h, and integrated with respectubalong au® = constant and z = constant path, becomes:
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ve [ 0 . 0 . 7 : 0 [ue
Lll {ﬂ(hzl-el)+ﬁ(h1-ez)+a(h1h2j _ez)}du"+EL1I iy duf =0 (15)

Assuming that the generalized shield is isolated, we jhaye 0 atu' = u'; andu* = u*, , and suppressing
a e”' dependance, we get in the frequency domain:

diya  Olvo . .
+ +jwp, =0 16
oz o ! P (16)

where j2 =-1 with Im(j) = 1. We note that i used in (5) (11) and (12) corresponds to an angular parametel
on the generalized screen, whereas j used in (16) corresponds to a phase parameter. Separately, they
the same complex number. However, because we are going to use both of them in expressions where tt
will have different meanings, it will be necessary to consider those two numbers, and also the phases
the complex quantities in equations where they appear, as having no relationship. Mathematically, th
numbers i and | are in fact real quaternions, not complex numbers. They can be regarded as compl
numbers only when: either only quaternions of khe jR subspace are present in a formula, or only
guaternions of th® + iR subspace are present in a formula. Any ¢jt\amelated to i vill be called
"angular", and any quantity related to j will be called "frequential”.

Let us also note that the choice of the definitions in (2), (7) and (8) was made for later convenienc
in (6), (13) and (16). This last expression can be easily expressed in the angular Fourier domait
Replacing,,, jyo andp, in (16) with (5), (11) and (12), then suppressing the axf)(dependence, we
obtain:

o _
—5, Tiwp=0 (17)
and foranyne N, n > 1:
di oL
— +nJVOnI+Jaan:O (18)

(18) being an expression in the field of real quaternions. In (18), each of the three quantitigs, ,
andp, , has a modulus, an angular phase as it is used in (5) or (11) or (12), and a frequential phase, a:
is used in (16). We note that the second term of (18) does not show up in (17).

The results (17) and (18) deserve some more comments. As we know, it is experimentally possibl
on an electrically short length of generalized shield to have either negpgildhis is what is obtained
in a short-circuited triaxial set-up for the measurement of the per-unit-length transfer impedance of
coaxial cable). In this case (13) and (17) say that the conservation of charges becomes a conservatior
the longitudinal currerit, , . For a current to flow on the generalized shield, it is therefore required that
a return circuit exists, which provides a suitable path for the return current. Equation (18) says that
return circuit is not required for > 1: a j,o , per-unit-length current may become the necessary return
current foriy, , currents, as shown on Fig. 2 in the casel, on an homogeneous metallic shield of
strange cross section.

On Fig. 2, we observe a situation where the only non-negligible components of the local curren
iy, flowing on the generalized screen, @g, andi,, ;. The local current, which only dependsiérand
zis shown orthogonally projected on the generalized screen's external boundary. The values of the angu
phases o}, , andi,, , along the z axis, are such that vortex-like current appear. Such eddy current may
show-up because of the local application (by external sources) of a varying magnetic field orthogonal t
the Oz axis. On Fig. 2, at points A and C (lying in the same plane orthogonal to the axis, with the
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coordinate differing of about) thei, , , components dominates. At points B and Djthe component
dominates, and between these two points of adfualordinate, the angular phase differencg,of is
aboutr.

The treatment of the generalized shield's behaviour 00 is therefore a global problem, that is
to say a problem involving the entire shield and a return circuit, but the shield belmasiobea local
problem for n> 1. A solution as presented on Fig. 2 for an homogeneous metallic shield is not always
possible for complying with (18) on a given generalized screen: we can for instance think of a shield mad
of thin isolated wires parallel to tlzeaxis. In this casej,, , per-unit-length current cannot flow, and the
establishment of,, ; currents is always a global problem.

[I1. DEFINITION OF THETYPES OFRESPONSE

The shield being passive, the charge and currents on the shield may be regarded as a responst
external stimuli. In this paragraph, we shall define the vocabulary and give some basic properties for
classification of charge and current distributions on the generalized screen. This vocabulary is centere
on the wordesponse

Definition: Response. We shall call "response of the generalized screen”, or simply "response" the pa
of the current distribution and the charge distribution on the generalized screen.

Theorem 1Let us denote the internal boundarydiyand by€; the external boundary of the generalized
screen.

i) There exists a definition of tha'(u?, z) coordinate system in the volume of the generalized screen and
on the boundarie®;, and, such that:

— if over & we place a thin perfect electric conductor and charge it, a local per-unit-length charge densit)
p_ independent of the variabled andz would correspond to the electrostatic equilibrium of this
conductor assumed the only object in space,

— if over &, and&; we place a thin perfect electric conductor, and obtain in this way the two electrodes
of a capacitor filed with a medium of homogenous permittivity, the surfésesonstant in the volume

of the generalized screen would be the equipotential surfaces when this capacitor is charged.

i) Moreover, this definition of the? coordinate in the volume of the generalized screen and on the
boundaries&, and€; is unique but for an arbitrary additive constant.

proof: Let us assume that we place a per-unit-length cli@rgenstant along the generalized screen, on
the metallized external boundaty., assumed alone in space. The surfégeéeing invariant by any
translation along @ the surface charge densjty which appears oiz; is also invariant by such
translations and does therefore not depenzl bat us assume there exists a coordinasecording to
our whishes, and let us chlthe length of the closed curl/€0). Because the local per-unit-length charge
densityp, is constant, it is equal 19 , and according to (6) we have:

1 p2rm
QZE‘[OPL du’ =p, (19)
using (4), we get:
Q
h, =
7 2mp, (20)

If sis an arc length oR(0), the coordinate® satisfies:
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du® _ 2mpg
2 &S 21

ds Q (21)

This differential equation uniquely defing’but for an arbitrary additive constant, which establishes the
unicity on&¢. The unicity on the generalized screen and on the boundgriss direct consequence.

Let us now establish the existence of the coordinate system. The constant coordinate surfaces c
be build easily. The only remaining problem is the mapping af'teeonstant and= constant surfaces
with u?. The per-unit-length char@g being placed along the generalized screen, we see that if the surface
charge densitp which appears off- alone in space is integrable, (21) can be used to compute
Howeverpgbeing defined as a derivative (derivative of a distribution) of the charge versus the coordinate:
z ands, it is necessarily Lebesgue-integrable. Also, it is also physically obvioupdhateither
everywhere positive or everywhere negative. We can therefore afftdiom (21), and it will be
monotonous. For a coordinate system built in this manner, according to (4) we have:

p, =21h,ps=Q (22)
andpg is a constant, QED.

Note that we will show in § VI that* can often be computed with a conformal mapping being
therefore continuous.

Theorem 2Let a definition of theu?, u?, z) coordinate system satisfy the hypothesis of the theorem 1.
The tangential componeny, €, + j,o h, &, of the local current vectay and the local per-unit-length
charge densitp, are defined in a unique way (the proof is left to the reader).

Definition: Tangential response. Let a definition of thk (%, z) coordinate system satisfy the hypothesis
of the theorem 1. We catingential responsef the generalized screen the pajk €, +jyo h, €, p.) of

the distribution of the tangential compongnte, +j, h, & of the local current vector, and of the local
per-unit-length charge densipy.

Definition: Standard response. Lef(e, +j,o h,&,, p,) be atangential response of the generalized screen.
We define the standard responses of the generalized screen according the unique decomposition of
tangential response with (5), (11) and (12), in the following way:
i) a response of typ&,, , iS aiy,(U?, Z) =iyao(2) current;
ii) a response of typs , is ap (%, 2 = p,_,(2) per-unit-length charge;
iii ) a response of tyde, o iS ajyo(U? 2) = jvo o(2) per-unit-length current;
iv) ¥ n e N*, a response of typé,, , is @iy, (W% 2) =iy, ,(2) exp(nud) current;
V) V n e N*, a response of typg, ,, is ap, (U 2) = p, ,(2) exp(nP) per-unit-length charge;
vi) V n e N*, a response of typig, ,, iS ajyo(U%, 2) =jvo «(2) exp(nuf) per-unit-length current.
Any standard response can also be regarded as a tangential regpoasé;
— a response of typg,, , is the tangential respondeg,(,(2) exp(in?) e, , 0);
— a response of typs , is the tangential response (9,,(2) exp(nw?));
— a response of tyge, , is a tangential respons@,§ (2 exp(nf) e, 0).

It shall be noted that this classification does not take into account pagsitlerents. However,
their mere existence is not denied nor neglected: they are only not described. This is of no consequent
because such current will usually be related to a response of one of the types defined above. As mentior
previously, the porpoising phenomenon on braided shields has for example been proved to be related
a response of type, o-
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Theorem 3Any tangential response of a given generalized screen, can be written in the form of a sun
of standard responses, each of a different type, and this expression is unique.

Proof: this theorem is simply the consequence of the existence and unicity of the contrugtiancf
iy, and of the Fourier series used in (5) (11) and (12).

Definition: Canonical decomposition. The unique expression defined in theorem 3 is called the canonice
decomposition of the tangential response.

Definition: Pure tangential response. At a given painihe tangential response is said "locally pure" if
there is only one non-vanishing term in the canonical decomposition at this point. The tangential respon:
is said "pure along the screen" if there is only noe-vanishing term in the canonical decomposition
along the screen: in this case the tangential response of the entire screen is a single standard respon

Submitted to a given electromagnetic environment, the generalized shield will generally have &
canonical decomposition containing the superposition of several standard responses. However, at tt
point we do not know if it is possible to create a pure response of a given type on a given shield, eithe
locally or along the screen. Answering this question in detail is the purpose of the next paragraph.

V. INDEPENDENTSTANDARD RESPONSES

Definition: For a given generalized screen and gor N*, a p-tuple of standard responses is said
physically independent if and only if, for apytuple of real quaternions, we can design a physically
achievable experiment, in which the canonical decomposition of the tangential response along the scre
will contain each of the standard responses multiplied by the quaternion of same index.

We note that this definition makes use of the trivial structure of vector space on the set of standar
responses, regarded as tangential responses. Because of the orthogonality of the exponential function
(5), (11) and (12), ang-tuple of standard responses of different types is linearly independent. Therefore
ap-tuple of standard responses is linearly independent if and only if all standard response it contains a
of different types.

Also, the physical independence gf-tuple of standard responses implies the linear independence
of thep-tuple. However the converse is obviously false, because the laws of @nidee structure of
the generalized screempose additional relations.

Theorem 4 A standard response of typg , and a standard response of typg are not physically
independent, because they are related by (17), which implies that if the standard responsg, of type
is known along the generalized screen, there is only one possible standard respongg of type

Theorem 4 means that the standard responses optypeeed not be taken into account if one
intends to build the set of the physically achievable tangential responses along a generalized screen. T
introduction of a standard response of tppgin the theory nevertheless addresses the need for a local
description of the tangential response.

Theorem 5V n € N*, a standard response of tyRg,, a standard response of tyjpg, and a standard
response of typg, ,, are not physically independent, because they are related by (18), which implies that
if the standard responses of tyipg, andp, ,, are known along the generalized screen, there is only one
possible standard response of type, .

Thus, forn > 1, the standard responses of typg, cannot exist independently of the other types
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of standard responses along the generalized screen. According to (18), the charges which appears bec:
of a standard responses of typg, and which are not removed by a longitudinal variatioiy Qfcurrent
of suitable amplitude, cause a per-unit-length chpyge

We may also state that for- 1, the standard responses of typs, need not be taken into account
of one intends to build the set of the physically achievable tangential responses along the generalize
screen. The introduction of a standard response of fypan the theory is however necessary for a local
description of the tangential response.

Theorem 6If the external boundary of a generalized screen is a perfect electric conduqbar, Moy
any p-tuple of standard responses which do not include any standard response @f,fyper any
standard response of typg, , for anyn € N*, this p-tuple containing a maximum of one standard
response of each type, is physically independant.

Proof: Let us first place the generalized screen in vacuum. The external boundary being a perfect electt
conductor, we havgr = 0. We will only use a source in the volume outside the generalized screen.
Therefore the only possible currents will be surface current on the external boudary. In this case (17) ar
(18) are equivalent to the conservation of charge.

From any linear combination of tipestandard responses meeting the hypothesis of theorem 6, we

can obviously create a new tangential response by adding standard responsegs patypef typg, o ,,

in such a manner that (17) and (18) are satisfied. Let’s call this tangential response the modified respon:
From the point of view of electromagnetism it is possible to move, with non-electromagnetic forces, the
free charges of the conducting external boundary, in order to obtain the modifiethseson the
generalized screen. These non-electromagnetic forces are usually taken into account with an electromotsi
force €. Because we are only interested in surface current, we can postulatesttertgential tahe
generalized screen’s external boundary. If the screen was a medium of finite condmciindyf a total
electric field¢ was present, the effect of the non-electromagnetic force would be described by the

equation:
j=0(E +§€) (23)

In the perfectly conducting medium of interrest here, we can only stat&-tfidtas a
vanishing tangential component, which can be written, if we mote unit vector normal to the
generalized screen pointing outward:

E=(EM)n-¢ (24)

E being the electric field at the surface of the generalized screen.

The use of non-electromagnetic forces acting on the generalized screen can now be suppressec
we observe that their purpose is to compensate the force due to the tangential component of the elect
field caused by the response. In other word, these non-electromagnetic forces were used to create
discontinuity of the tangential component of the electric field across the external boundary of the
generalized screen. We know (cf. [8] p 34) that the same effect can be obtained with a surface density
magnetic currenvl g placed on top of the generalized screen, taking on the value:

Mg =E xn =-£xn (25)
This surface density of magnetic current therefore allows the creation of the wanted modified

response. One can show that this layer of magnetic surface current is equivalent to a double layer
electric surface current. It is clear that one could, with small enough conductors and generators, create
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device approximating the double layer of surface current. This is what was meant by "a physically
achievable experiment".

Theorem 7If the external boundary of a generalized screen is a perfect electric conductor:

i) it is always possible to create a field configuration (i.e. field values as a function of space coordinates
that will produce a locally pure standard response of any given type,

i) and possibilities of creating pure standard responses along the screen are only limited by the theorel
4 to 6 (the proof is left to the reader).

V. DEFINITIONS OF THET YPES OFEXCITATION

Definition: Standard excitation. For a given generalized screen, we define a standard excitation at a poil
z, an electromagnetic field configuration produced by sources in the volume outside the generalize
screen, which would produce, if the external boundagywas perfectly conducting, a locally pure
standard response atThe type of the standard excitation is by definition the type of this standard
response.

We note that this definition is valid because we first established theorem 7. It introduces standar
excitations of typae,, ,,, of typep, , and of typej,, . It should be emphasized that many different
electromagnetic field configurations are likely to produce the same standard excitation at.alheire
is therefore no unigueness to be expected here.

A conjecture is that any electromagnetic environment (i.e. any applied electromagnetic field
configuration in the volume outside the generalized shield) of a given generalized screen, can be writte
in the form of a sum of standard excitations at a ppiaach of a different type. If true, this statement
seems difficult to proove. We shall demonstrate it in 8§ VII, in the case of generalized shield of circular
cross-section.

VI. CALCULATION OF THE STANDARD RESPONSES ANDEXCITATIONS

This paragraph will introduce the basics of a method for the computation of the standard response
and excitations. This method will be implemented in the 8§ VII, § VIII and 8§ IX, in three situations of
increasing complexity for the shape of the external boundary: the cylinder of revolution, the elliptical
cylinder, and the rectangular cylinder.

In fact this paragraph focuses on the main difficulty: defining a coordifate the external
boundary, according to the hypothesis of theorem 1. This being a two-dimensional potential distributior
problem, it will be treated with analytic functions. In order to solve the problem of a charged conducting
external boundary, only object in space, we shall consider a complex pofemtiadh is an analytical
function. The real part of ¢ will be the electric potential, and we shall néte¢he opposite of the
imaginary part of; usually refered to as the stream function.

We know (see [9] page 236) that the lifes constante are field lines, and that the flux of the
electric field (per unit length in the direction Oz) between the field Fhed=, andF =F, is simply
F, - F,. Specifically, on the conducting external boundéty the charge surface densitytakes on the
value:
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_ 4F
Ps= thduz (26)

In the case of interest, we assume that the local per-unit-length charge deissitynstant for the
charge distribution of electrostatic equilibrium. According to (20), we may write:

dF
Q:27Tth5227'[£0d—uz (27)

whereQ is the charge on the generalized screen, per unit length afohige@an see that if the complex
potential ¢ is produced by the per-unit-length char@e= + 2 ne, x 1 Volt, u* is defined by
u? = +F /1 Volt, to which might be added any constant.

Once a complex potential is computatiis therefore known. The standard responses are then also
known, because they are explicitely defined by (5) (11) and (12).

VII. CYLINDER OF REVOLUTION AS EXTERNAL BOUNDARY
A. Standard Responses and Standard Excitations on the Circular Cylindrical Generalized Screen

Let us first closely examine the case of a generalized screen having an external boundary being
cylinder of revolution. If this external boundary was conducting, charged, and alone in space, it is wel
known (see [9] page 241) that a possible complex potential for the per-unit-length Ghangthe
cylinder would be givehby:

Q

{=- T In(x +iYy) (28)

0

so that we would obviously have:

V:—%In1/x2+y2

0
F :&arg(x+ 1y)
2TE,

0

(29)

Thus, according to § VI, we can choage 0, 6 being the argument of the complex variable, and
take the coordinates, u?, z) equal to the circular cylinder coordinate, 2), for whichh, = 1 anch, =r.
Because this separable coordinates are convenient for calculation, let's try to compute the standa
excitations.

Let us therefore consider a (generalized) screen placed in vacuum, with a perfectly conductin
circular cylindrical external boundary of radiysIn the volume outside the screen, suppressifyj a e
dependency, we may write the free-space (see [10], pp. 355-361, [8] pp. FR&i2l in circular
cylindrical coordinates as:

! In order not to confuse the reader, we shall nozakeady utilised) but + iy for the complex variable.

2 Both Stratton ([10], chap. VI, § 6.6, (28) and (29)) and Harrington ([8],chap. 5, § 5-1, (5-13) and (5-14)) use the
same complex number for the angular phase and the frequential phase. This is erroneous because, for instance, a rota
of n/2n is not equivalent to a time translationmd®w. The appropriate expressions are (30), (31) and (32).
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] (L 0p, . o) . k& .
E = _ke‘“{ Jhn: [%7+Cn7j mo;;n(wnwwn)l}dh
d d
{ n(a@,+ G )Iﬂ%Z[Q;)” +d #)}dh

£ =[ ek~ hz)i(aafpﬁcaw)

=[lemi<s [ o, 04/)

K J-_ke {J nor & (3n(l’n+q#l | JhZ +d & h
hz Jk % % _.D oc |

" J ej {’70 [a" o g ) ]rn;n(qun"'qun)l}dh

H,=[ ek )i (o, + dw,)

(30)

where: the integen and the real propagation "constan@ére separation "constants"”,
a, andc, are f dependent) amplitude distributions, expressed in Vm?,
b, andd, are @ dependent) amplitude distributions, expressed in Am?,
N, IS the free-space wave impedance,
k is the wave numbew/c,,

and where the functior, andy;, are defined by the equations stemming from the separation of variables.
In the case where # £ k, this is a Bessel differential equation and we obtain:

@.(r)= H(n”(\/k2 - h2r) e
0.0 =H2 =T7)

(31)

which are functions depending drand where H" and H® are Hankel functions with a frequential
phase. In the case= t k, there is no Bessel equation, and the differential equation leads us to:

e (r/r forn#0
7= { ()
€ forn=0
- -n (32)
e (r/ry) forn 0
Wo(r)=1
e In(r/r,) forn=0

Forh # £ k, we note that the functiomns, are cylindrical waves propagating toward theafis, and
that the functionsy,, are cylindrical waves propagating from the éxis, so that only the fields
components related to thg functions can be caused by the current and charges on the screen.

Because there are angular phase and frequential phase dependancies, we note that the amplit

distributionsa,, c,, b, andd,, as well as the field amplitude, E,, E,, H,, H, andH, are Hamilton’s
guaternions.
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For h = + k we can check that, andb, are not associated with any field component.hrert k
andn = O the electromagnetic fields depend only on the variahlasdv, defined by:

{un5(h-k)= a,xn,hi

_ , (33)
Vo d(h=K) = G Fn,d,i
whered is the Dirac distribution. The variablesandv, therefore havéhedimension of Vm. In this case
we in fact have a TEM wave propagating along the shield axis, and the only non vanishing field
components are:

_jkn .. n -n\ in
E :"‘%]e JIQ(un(r/ro) ~Vo(1/To) )é ’
E, :i.—lr(ne“"z(%(r/ro)” +vn(r/r0)_n) j @n
s 1 (34)
e
Ny S
1
Hy=+—
o TE E

We can observe that we only considered the valubgning rise to periodic solutions along the
screen axis, which correspondhtoeal, included in the intervatk, k], whence our integration path in
(33).

The boundary conditions on the (perfect) shield’s external boundigy=&, = H, = 0 atr =r,,

Forh #x k, the boundary condition is equivalent to:

On 3, Hf)(m 5) + qH(,f)(m (g) =0

(1) (2) (35)
On h, d:; (\/k2 - h2r0)+ d, d:)n( (\/k2 - h2|6) =0

so that, the variable not withstanding, the fields depend on two arbitrary amplitudes.

Forh =k, the boundary condition is equivalent to:

{Dn;to (%inoqi)+(%$’70dni):0 (36)

d, =0

so that taking (33) into account, the sigmef £k not withstanding, the fields depend only one arbitrary
amplitude.

For any field configuration, from (8) and boundary conditions on the external boundary, we find:

pL = Zmo ‘SO Er
jvo =-2r H, (37)
iya = 27T, Hy
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At this stage, we can see that the componenit, of indexn correspond to standard excitations
of typei,»,, that the components Hf of indexn correspond to standard excitations of type, and that
the components d&, of indexn correspond to standard excitations of tppg

B. Simple Combinations of Standard Excitations on the Circular Cylindrical Generalized Screen

It is now possible to establish the complete list of the free-space field configurations which lead ta
the simplest combinations of standard excitations, allowed by theorems 4 and 5 along any generalize
screen with a circular cylindrical external boundary:

— A standard excitation of type, ,, only combined with a standard excitation of tgpgas prescribed

by theorem 4 can be created along the generalized screen: either with an electromagnetic field includir
only h = = k components with all antipude distributions equal to zero excegf or with an
electromagnetic field including only = + k components with all amplitude distributions equal to zero
excepta, andc, related by (35). We note that in the special tes®, the canonical decomposition only
contains the standard excitation of typg .

— A pure standard excitation of tyge, , can be created along the generalized screen, with an
electromagnetic field including only = £ k components with all amplitude distributions equal to zero
exceptb, andd, related by (35).

— Forn > 1, a standard excitation of typg ,,, only combined with a standard excitation of tgpe as
prescribed by theorem 5 can be created along the generalized screen: either with an electromagnetic fi
including onlyh = + k components with the amplitude distributiansndv, related by (36), or with an
electromagnetic field including only = + k components with all amplitude distributions equal to zero
excepta, andc, related by (35).

— Forn > 1, a standard excitation of typg ,, only combined with a standard excitation of tgpe as
prescribed by theorem 5 can be created along the generalized screen, with an electromagnetic fie
including onlyh # + k components with the amplitude distributi@aysc, , b, andd, related by (35) and

the additional relation cancellirigy,.

- Forn > 1, a standard excitation of typg ,, only combined with a standard excitation of type as
prescribed by theorem 5 can be created along the generalized screen, with an electromagnetic fie
including onlyh # + k components with the amplitude distributi@)sc, , b, andd, related by (35) and

the additional relation cancellirig, this being in general only possible for 0.

C. Locally Pure Excitations on the Circular Cylindrical Generalized Screen

We now understand that, with an appropriate choice of incidence, or by taking advantage of
interference, it is possible to locally create a field configuration where only one standard excitation
dominates. Thus:

— In order to obtain a standard excitation of typg locally pure in the neighbourhood of 0, we can

for instance combine a field componént k and a field componeit = - k, both of them with the same
amplitudec,. This is easily obtained in the laboratory, on a fraction of wavelength alongakesn a
short-circuited triaxial test fixture. This implementation is much simpler than the creation of a cylindrical
wave withh = 0.

— In order to obtain a standard excitation of tppglocally pure in the neighbourhood of 0, we can

for instance combine a field componént k and a field componemt = - k, both of them with their
amplitudesc, of opposite value. This is easily obtained in the laboratory, on a fraction of wavelength
along the @axis in an open-circuited triaxial (or quadraxial) test fixture.

— Obtaining locally a pure standard excitatiorj,gf, is easy, as we have previously seen. We can for
instance create an electromagnetic field having ohly® component with all amplitude distributions
equal to zero except etd, related by (35). This is easily (but approximately) obtained in the laboratory
providedr, is much smaller than the wavelength, if the screen is installed on the axis of a solenoid eac
turn of which would be separately excited by a current source in phase with the others.

- Forn > 1, we can for instance obtain a standard excitation of itypg locally pure in the
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neighbourhood af = 0, by combining a field componémt k and a field componeht = - k, with equal
amplitudesu, andv,, these amplitudes being related by (36). This is possible to obtain in the laboratory
on a fraction of wavelength along thedxis in a test set made af &hort-circuited tapes connected to

a symetrical generator.

—Forn> 1, we can for instance obtain a standard excitation optydecally pure in the neighbourhood

of z= 0, by combining a field compondmt k and a field componeiht = - k, with opposite amplitudes

u, andv,, these amplitudes being related by (36). This is possible to obtain in the laboratory on a fractior
of wavelength along thez@xis in a test set made afi Bpen-circuited tapes connected to a symetrical
generator

—Forn > 1, we need at least three different incidences to obtain a standard excitatiorf tiqually

pure in the neighbourhood of 0. We will for instance combine a field component O, the amplitudes

a, , ¢, , b, andd, of which will be related by (35) and the additional relation canceipgvith a field
component =k and a field componetit = - k, with opposite amplitudasg, andv,, these amplitudes
being related by (36) and taking on an appropriate value for cancellng & theE, part of the
componenh = 0.

Note 1: In practice, the locally pure standard excitations are only easily implemented in the
laboratory for a generalized screen sample with transverse dimensions much smaller than the area wh
the excitation is locally pure, which is itself necessarily much smaller than the wavelength, exggpt for
For j,o o though, it is also much easier to implement the pure standard excitation on a sample o
electrically small cross-section.

Note 2: Fom > 1 if we create a standard excitation of typg, locally pure in the neighbourhood
of z= 0, we note that as arround z = 0 we necesserily find the currents which have been introduced 1
remove the charges brought by fhhe response. If the radiugif small compared to the wavelength, (7)
and (18) show that the current alaggvill only dominate the current alorgyon a distance of the order
of ro/n. We should therefore question the possibility of making useful laboratory measurements in this
situation.

Note 3: In a test set-up with> 1 short-circuited or open-circuited tapes meant to obtain standard
excitations standard of typg, , or of typep, ,, locally pure in the neighbourhood of 0, the shape of
the different tape should be as close as possible to the equipotential surfaces of the transverse electrost
problem for TEM propagation.

VIII. ELLIPTICAL CYLINDER AS EXTERNAL BOUNDARY
Let’s now study the case of a generalized screen with an external boundary having the shape of :

elliptical cylinder. We shall nota the semi-major axis argthe semi-minor axis of the ellipse. For an
appropriate choice of the orientation of, @ parametric equation of the external boundary can be written:

{x = acost
(38)

y = bsint

It is well known (see [9] page 242) that if the elliptical cylinder is charged with a per-unit-length
chargeQ and alone in space, his complex potential is given by:

_ -Q X+iy
(= o, arccosrﬁ—m) (39)

In a plane orthogonal to the axis, the rectangular coordinates of a point can be deduced from tr
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values of the potential and stream functions:
x=va + I coshz%v coszQﬂ F

_ 2 . 2Tk, . 2TE, (40)
y=—+a’+ bsinh a V sin 3 F

The equipotential lines and field lines can be directly obtained from these two formulas. They are
respectively confocal ellipses and hyperbolaes.

From the 8§ VI and the comparison of (38) and (40), we can see that on the screen external bounda
we can take’ =t. More generally, in the volume outside the generalized screen and the external boundar
we can take the coordinates, (%, 2) simply equal tog,, £,, 2) where£, andg, are the elliptic coordinates,
which are respectively equal to V anB given by (40) foQ = - 2 e, x 1 Volt.

From (41) we can compute the complex field given by:

E,-IE = —% (41)
The result is:
e Q 1
Ex IEy 27.,}_:0 \/(X+jy)2_(a2+ tf) (42)

With (38) and (42), we easily establish that, on the external boundary of the generalized screen, tt
surface charge density is:
Q 1

Ps = ortab sz LY (43)

a’ b

The value oh, on the boundary can be directly obtained from (40), and we find:

h, =va&sin*t+ b? cog t (44)

Note that the use of (4), wiflh, = Q from (6), and (44), allows one to establish (43) without using
the electric field normal to the external boundary.

The problem of the elliptical cylinder being more complex than that of the circular cylinder, we will
not try to compute all standard excitations. In fact, we will limit ourself to defining possible laboratory
set-up for the creation of the standard excitations of typgs p, o, andj, o, because they are always
trivial:

— A standard excitation of typgs , obviously corresponds to the natural electrostatic charge distribution
of the charged generalized screen (assumed with a conducting external boundary) in free space, for whi
we can compute the equipotential surfaces. The metallization of one of these surfacegadth a
conductor, this surface being choosen close enough from the screen for the propagation to be limited
the TEM mode at the frequencies of interest, is a natural way of constructing a test set-up for producin
typep, o standard excitation. The standard excitation will be locally pure provided the instrument is used
open-circuited, as in the case of the circular cylinder.

— A standard excitation of type, , corresponds to the natural distribution of surface currents on the
generalized screen (the external boundary of which is assumed perfectly conducting) when the instrume
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defined for the production of standard excitation of typgs used short-circuited. This is because, for

the TEM propagation mode in a lossless wave-guide, the transverse current distribution is equal to tt
charge distributions multiplied by a constant (see [11], p. 248).

— A standard excitation of typg o is easily obtained in the laboratory provided the cross-section of the
generalized screen is much smaller than the wavelength, if the screen is installed on the axis of a solent
each turn of which would be separately excited by a current source in phase with the others, as with t
circular cylindrical shield.

IX. RECTANGULAR CYLINDER AS EXTERNAL BOUNDARY

This paragraph will discuss the case of a generalized screen for which the external boundary is
cylinder of rectangular cross-section. We shall reotndb respectively the larger and the smaller
dimensions of the rectangle. The equation of the rectangle shall be:

y=0ory=-Db for XD|: g g}
(45)

a a
=-—orx=— for yOy-b0
X= =2 Or X=2 yO[-b, 0]

We shall use the known complex potential of a thin winé at0Y = 1, carrying a per-unit-length
chargeQ, installed above an infinite ground plavie 0 (see [12], page 209):

. Q X+i(Y+1)
<= 27, In[x+i(v—1)) (46)

We now transform this problem into the problem of the perfectly conducting external boundary of
the rectangular cylinder charged in free space, with an appropriate Schwarz-Christoffel transform (see [9

page 313):
S ook o, (47)

X+iy:? 0 ('[2+1)2

whereh andk are defined as the solutions of :

J J(E2-n?)(1- K2 _2b J n (- K2)(1- k) .

t2 + 1 (t*+ 1)

(48)
\/ t? — h?)(K2t2 - \/ — K?)(1- K202)
j j dt
(t*+ 1 (t*+ 1)
andA by:

A= 2b

(49)

% The formulas (365), (366) and (367) of [9] should be modified, because one cannot arbitrarilyrasdufoethe
computation of the potential external to a rectangular cylindrical boundary.
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This conformal mapping transforms the real &s0 into the rectangle defined by (45), the open
half-planeY > 0 into the surface outside this rectangle, and the Kaird, Y = 1 into infinity. Let us note
that the real pal of the complex potential vanishes on the external boundary of the screen.

Eqg. @8) and @9) can be solved numerically without difficulty. The formulas (46) and (47) then
become simple and effective means for computing the complex potential at any point in the volume
outside the screen. Specifically, on the external boundary of the screen, we=h@yand (47) gives:

F= ;Q arg X + i) (50)

0

Using (27) and choosing® = F + &t for Q = 2 e, we get:
2 1
u-=rm- 2arctarﬁy) (51)

on the external boundary of the screen, with a cit=a0. Note that foX > 0 we have:
u? = 2arctanX (52)

on the external boundary of the screen. The formulas (47) and (51) allow to compute effectively the
position of any point on the external boundary of the screen for a giweordinate, and afterwards to
extend this definition of” to the volume outside the screen. This is what we have done on Fig. 3 in the
casea = 2b, after plotting the external boundary (cuke 0), we plotted some? = constant curves. The
latter were computed by integration of (47) along the field lines derived from:

exgV + {m-])+1

X v )1

(53)

with u? constant an/ as variable, taking on the value 0 on the external boundary of the screen.

This investigation shows that the coordingtean be easily defined for an external boundary having
angles, without having to resort to numerical methods for a two-dimensional problem. It also shows the
even in this casey is continuous.

As in the case of the elliptical cylinder, we can establish withouitiaddl computation the
definition of a possible laboratory set-up for the creation of the standard excitations of the,types
typep, o, and of type,,o,. The definition is exactly identical to that presented for elliptical cylinder, only
the shape of the equipotential surfaces being different.

X. CONCLUSION

We have presented in this paper the first part of a theory of the screening properties of cylindrica
generalized shields. We have only defined a classification of the responses and excitations in the preser
of sources in the volume outside the generalized screen. This classification is based on the definitions a
basic properties of the standard response and standard excitations, in curvilinear coordinates.

It should be noticed that this theoretical presentation is not limited in the frequency domain. Ever
though it extensively uses the property of cylindrical shields with a perfectly conducting external
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boundary, this theory is applicable to any cylindrical screen, at any frequency. It is therefore of interes
for the study of screened cables, shielded conduits, and other long conducting structures like fuselage

Establishing the standard reponses on a given screen was shown to be equivalent to tifnding a
cooordinate meeting some requirements. We have shown on three different examples how this coordine
could be computed with analytical functions.

In the case of an external boundary of revolution we could define test set-up for locally producing
any pure standard excitation. This work could be done for boundaries leading to other separabl
coordinates.

We note that for an arbitrary shape of the external boundary of the generalized screen, generatir
locally pure standard excitations of the typgs, of typep, o, and of type,,, is always trivial. However
in general, it will not be possible to determine analytically the possible sources for other pure standar
excitations, as we have done for the circular cylinder. For this problem, the analytical results can probabl
not be obtained much further than formula (25), which in practice requires the computation of the electri
field produced by the standard response.

In the case of a perfectly conducting (electric) external boundary, the present paper also discusse
the combination of standard responses caused by the most general external field distribution.

REFERENCES

[1] F. Broydé, E. Clavelier, "Comparison obGpling Mechanisms on Multiconductor Cabld&€EE
Transactions on EMCVol. 35, No. 4, pp. 409-416, November 1993.

[2] F. Broydé, E. Clavelier, "Measurement of the Parallel and Axial Transfer Impedances: Theory,
Practical Methods and Result®roceedings of the 1994 EUROEM conferemdeaux, May 30-June

3, 1994, pp. 1072-1080.

[3] F. Broydé, E. Clavelier, "Complément a la théorie du couplage champ a céable: définition des cinc
modes de couplage et mesure des impédances de transfert axiales et pdPatleéesiings of the 7iéme
Colloque International sur la CEM "RCEM 94Toulouse 2-4 mars 1994, pp 463-470.

[4] F. Broydé, E. Clavelier, "Parallel and Axial Transfer Impedances: Theoretical Summary and Local
Measurement Métds", Proceedings of the 1995 Zirich International Conference on ER{@ch,

March 7-9, 1995, pp 501-506.

[5] F. Broydé, E. Clavelier, "Definition, Relevance and Measurement of the Parallel and Axial Transfer
Impedances'Proceedings of the 199&EE International Symposium on EMA&tlanta, August 14-18,

1995, pp 490-495.

[6] T. Karlsson, "The Topological Concept of a Generalized Shield", Interaction Notes, Note 461, EMP
memo 801, FOA Report C 30488-4.2, April 1988.

[7] F.M. Tesche, M.V. lanoz, T. Karlsson, "EMC Analysis Methods and Computational Models", John
Wiley & Sons, 1998.

[8] R.F. Harrington;,Time-Harmonic Electromagnetic FieldglcGraw-Hill, 1961.

[9] E. Durand Electrostatique— Tome |l— Problémes généraux ConducteursMasson, 1966.

[10] J.A. StrattonElectromagnetic TheoryMcGraw-Hill, 1941.

[11] R.E. Collin,Field Theory of Guided Wavesecond edition, IEEE Press, 1991.

[12] E. DurandElectrostatigue— Tome I— Les distributionsMasson, 1964.

Document 96052101G Excem page 20/20



	Title
	Abstract
	I. Introduction
	II Charges and currents
	III Definition of the types of response
	iV. Independent standard responses
	V Definitions of the types of excitation
	VI. Calculation of the standard responses and excitations
	VII Cylinder of revolution as external boundary
	A. Standard responses and excitations
	B. Simple combinations of standard excitations
	C. Locally pure excitations

	VIII. Elliptical cylinder as external boundary
	IX. Rectangular cylinder as external boundary
	X. Conclusion
	References

