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Characterization of a Cylindrical Screen for External Using a Fourier series expansion with respect to the azimuthal coor-
Excitations and Application to Shielded Cables dinateu?, we then defined the amplitudes . (z,t), jvon(z,t), and
ivan(z,t) of the spectral components, wherec N. Forn = 0, they
Frédéric Broydé and Evelyne Clavelier are time-dependent real functions of the coordinatand forn. > 0,

they are time-dependent complex functions of the coordinate
Abstract—The main purpose of this paper is to present the definition We then applled_a transform consisting of a varlatlon_of the Fourier
of sets of parameters, which provide an intrinsic characterization of the transform on the time variable of these complex functions of time
shielding performances of a cylindrical generalized screen submitted to andz. The result of this transform is a function of the radian frequency
an external field. As examples, we detail two implementations of this ., and ofz, into the field of Hamilton’s quaternions. We will denate
approach at the end of the paper, for the computation of the voltages and; the two real quaternions with a square equatt respectively,

induced by an incident field on a short section of a multiconductor di | h  and f ial bh f
shielded cable. More precisely, our approach is based on an expansion of COT"€Sponding to an angular p aserg® and to a frequential phase o

the fields which may excite the generalized screen, into a combination of 7/2. In the following, using the same notations for the time-dependent
“standard excitations.” They are defined in such a way that the shielding quantities and for the frequency- dependent quantities, amplitudes like
performances for a given standard excitation can be characterized in (. ), jyon(z w) andiy an(z, w) will be real quaternions and

a simple manner, for instance, a single scalar parameter. In the case S o (s : - :

of shielded cables of electrically small cross section, this leads us tothecxp(mu ) andexp(juwt) dependenCIeS will be omitted. . .
the rigorous introduction of the parameters for the “five main types We showed that the conservation of charges on the cylinder is
of coupling,” for which some experimental results have already been equivalent to a simple formula ([1, egs. 17, 18]), relating.(z, w),
published. We then establish the exact induced current and voltage on Jjvon(z,w), andiv 4, (z,w) of same index.

a section of cable running above a ground plane, when an incident field We introduced the wording tangential response: it was defined along

ropagates parallel to the ground plane, in the case of a longitudinal . L . ’
Exc‘ﬁaﬂon, a‘;d in the CaSS of a fransverse excitation. We l?se thesethe shield as a distribution of the tangential component of the local cur-
results to provide the value of the voltages at each end of a short rent vector and a distribution of the local per-unit-length charge den-
section of cable characterized with the parameters for the five main gjty, Standard responses were defined as tangential responses which
types of coupling. can be described using only, for a single value o single amplitude

Index Terms—Axial transfer impedance, cable, cylindrical screen, elec- j, (,, (2, w) Or iy 4, (z,w) Of pL.(z,w). According to the case, the
tromagnetic (EM) coupling, parallel transfer admittance, parallel transfer standard response is said of tyji€oy, O iv 4. OF pL.. Any tangen-

impedance, per-unit-length transfer impedance, quaternions, radial elec- tial f lindrical h . d ition int
tric coupling coefficient, shielded multiconductor cable, shielding, shielding lal response of a cylindrical screen, has a unique decomposition into

matrix, standard excitation, standard response. standard responses.

We decided to call “standard excitation at poiritan electromag-
netic field distribution created by sources in the volume outside the
generalized screen, which would give rise to a locally pure standard

It is well known that the per-unit-length transfer impedance is E@sponse at this point, if the generalized screen was “ideally metal-
suitable parameter for characterizing the shielding performancesliged,” that is to say replaced with a screen having the same external
a coaxial cable with a homogenous screen. This characterizatiorP@indary, made perfectly conducting.
known to be intrinsic to the cable (i.e., it describes only the coaxial In this paper, this theoretical construction will be applied to the char-
cable, not the cable behavior in a given measurement setup) anddierization of cylindrical generalized screens submitted to the fields
can be used to compute the induced signal in any configuration of fesources in the volume outside the generalized screen. In the case
cable. This paper addresses the similar (but more general) questioffggylindrical shells, our theory introduces a shielding matrix for the
the characterization of the shielding performances of a cylindrical ge¢haracterization of the screen. In the case of multiconductor shielded
eralized screen, for instance, the shield of a multiconductor shieldegbles, this will allow to justify, enhance, and extend our results shown
cable of noncircular cross section. We will consider that the generél-earlier papers on the five main types of coupling [2], [3].
ized screen is submitted to an external field. The behavior of the screen
in this external field being complicated, it is generally not possible to
find a simple parameter to characterize the shielding performance of the Il. CHOICE OF THEEXTERNAL BOUNDARY
screen in any external field. We will therefore use a divide and conquer
approach. We will implement some sort of expansion of the applied Any characterization of the shielding performances of a generalized
field into a combination of “standard excitations,” so chosen that wsreen is based on a classification of the possible excitations. For each
can use a small number of parameters (ideally a single scalar) for thass of excitation, a “shielding parameter” is then defined, which char-
characterization of the generalized screen for each standard excitatamierizes the screen’s shielding capability. According to our approach,

In an earlier paper presenting the theoretical basis of our approakb classification will be based on the use of standard excitations at
to the modeling of the shielding properties of cylindrical shields advery pointz along the screen. Thus, we will have to define such a
arbitrary cross section [1], we introduced several definitions for thehielding parameter for each type of standard excitation. It will be done
time-dependent current and charges on the generalized screen: the iec8kection 1V for empty shells and in Section V for multiconductor
per-unit-length charge densipy (v, z,1), the local azimuthal per- cables.
unit-length current densitjt o (1, z, t) and the local axial currenton  Prior to this, we must investigate the relevance of this classification.
the screeriv 4 (u”, z,t). These three real quantities are all dependefhe classification can be regarded as relevant only if, for any given
on the curvilinear coordinates’ and= on the screen and on the timetype of excitation, the response of the shield to any excitation of this
t and can be, respectively, expressed in C/m, A/m, and A. type is similar. For instance, as shown in [1, Secs. VII. B, VII. C] for

the special case of a circular cylindrical external boundary, there are
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Fig. 1. Flat multiconductor shielded cable: (a) with its screen appearing as a dark area and (b), (c), and (d) with several possible generalizedtatrieen
the cable screen.

If the generalized screen which we wish to characterize had an sxandard excitations. From the considerations of [1, Secs.VII, VIII, IX],
ternal boundary with electromagnetic properties close enough from tlie understand that an expansion into a sum of standard excitations can
properties of the ideally metallized generalized screen, any standard@xy be carried out for the simplest shapes of the external boundary of
citation of a given type at a poiatwould, by definition, induce alocally the generalized screen.
pure standard response of the same type at the paint, therefore,  Fortunately, the concept of generalized screen is flexible and a first
the same currents and the same charges on the screen. The behavgivef generalized screen can be combined with an exclusion volume
the screen at the pointwould therefore be the same. Our classificatiofisee [1, Sec. 1]) in order to create a second generalized screen with a
is necessarily relevant for such screens. simpler geometry of the external boundary. If, for instance, we wish

However, at this stage, we are not able to establish how similar ttwecharacterize the screen of a flat multiconductor screened cable the
currents and charges induced by two different standard excitationscadss section of which is shown in Fig. 1 (a), we will not try to com-
the same type at pointwould be, when the generalized screen undgyute the standard excitations for a generalized screen having the same
consideration has an external boundary with electromagnetic propesundaries as the cable screen! We may instead consider a generalized
ties differing from those of the ideally metallized generalized screescreen with a simpler external boundary containing the cable screen,
This is why we will accept the following conjecture for the implementafor instance, a generalized screen with a rectangular cylinder as ex-
tion of our classification to shields differing from the ideally metallizedernal boundary, as shown in Fig. 1(b), or a generalized screen with a
generalized screen. We assume that any two standard excitations okihgpler elliptical cylinder as external boundary, as shown in Fig. 1 (c),
same type at point will give rise to the same behavior of the screen abr a generalized screen with a—simplest—circular cylinder as external
this point. This conjecture can be viewed as an approximation consigbundary, as shown in Fig. 1 (d). In the different drawings of Fig. 1,
ered as satisfactory without further examination. The conjecture wilhe hatched areas represent the exclusion volumes and the dark areas
for instance, be useful when we want to characterize a screen haviegresent the screen of the flat cable.

a structure that does not allow charges to flow in any direction on theln the remaining parts of this paper, we will therefore only consider
screen’s surface, or when the conducting part of the screen differs fréme case of a general screen having an outer boundary of revolution.
the outer boundary of the generalized screen. Using the idea of the simplification the outer boundary and our con-

We have also to consider how a characterization can be implemenjecture, the following will nevertheless be applicable to generalized
experimentally and theoretically. Experimentally, for the measuremesgreens with other outer shapes.
of the said shielding parameters, a generalized screen under study will
be inserted in test setups capable of producing standard excitations
of different types. A different test jig will be needed for each outer II. NATURAL AMPLITUDE OF A STANDARD EXCITATION
boundary and each type of standard excitation. Obviously, for econom-
ical reasons, few setups will be implemented and only for the simplestin order to characterize the shielding performances of a general-
generalized screen outer boundaries. On the other hand, the theadzet screen, for instance, at an angular frequen@nd at the point
ical implementation of the characterization of a generalized screen willwe will have to compare a set of physical quantities measured in the
typically require, first the computation of incident fields, then, the exrolume inside the generalized screen, to a value characteristics of the
pansion into a sum of as many standard excitations as needed forahwlitude of the field distribution of a given type of standard excitation,
desired accuracy, and, finally, the computation of the amplitude can-the neighborhood of = 0. Defining the latter value is the purpose
pled through the shield using the shielding parameters for each of the$¢his paragraph.
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The first idea for the definition of the amplitude of a given type obf the axial component. of the magnetic field forr > ¢ using
standard excitation, would be to use the amplitude of the electric figdithnkel's functions
or the amplitude of the magnetic field, at a reference point taken in ) @) @) 0
the volume outside the generalized screen, for one of the standard ex7, — 232, Hy (kr)H,” (kro) — Hy™ (kr)H, (k"'U). 4)
citation of this type. It would seem natural to use the amplitude of a 2H§2) (kro)
magnetic field for the standard excitations of type:,, andjv o, and . . e
to use the amplitude of an electric field for the standard excitations\é‘fh'Ch' using [4, 9.1.17] may be simplified into
typeprn. 2j
This approach based on a field amplitude at an arbitrary reference ) PR
. wkrH;™ (kr)
point calls for two remarks.
1) Itis obvious that by using an arbitrary point in the volume outside We note that if the generalized screen has a small radius compared
the generalized screen, the angle of incidence plays an unwarfewavelength, (5) can be transformed using [4, 9.1.9] into
role. . .
2) Also, the more or less arbitrary radius of the generalized screeill. = 2k By 2 (Yo(kr)J1 (kro) — J,O(kr)h (kro))
(see Section Il) is likely to play an unnecessary role. J1 (ko) = g¥a (kro)

We shall, in the following, in the case of a generalized shield with ayalid for 1 > kr > kro. When and where these assumptions are valid,
outer boundary of circular cross section of raditsdefine the “nat- the ideally metallized screen is therefore surrounded by a homogenous
ural amplitude” of a standard excitation in a way which will avoid thesgxial magnetic field. We shall note that, because an infinite solenoidal
shortcomings. In order to accomplish this, we shall consider that tberrent sheet of small radius compared to wavelength does not produce
amplitude is determined with an ideally metallized screen insertedany external field (the magnetic field is trapped into the sheet). The field
the test setup and refer to the electromagnetic field distributions derivgiden by (6) is also equal to the field applied by the external sources of
at[1, Sec. VII. C], each of them belonging to a given standard excitghe test setup. In the case of a generalized screen of small radius com-
tion at the point: = 0 and being defined by a combination of fieldpared to wavelength, the chosen natural amplitude is therefore equal to
components. Each field component corresponds to a given value of the magnitude of the homogenous axial magnetic field in the vicinity
propagation constart, which can take on values in the interval§,  of the outer boundary, also equal to the applied axial magnetic field.

k], k being the wave number. Thus, there are six cases to be considere@ase 4: For a standard excitation of type 4., with » > 1 we shall
in the definition of the natural amplitudes, each of them correspondingfer to the combination of a field componént % and a field compo-
to a standard excitation of a given type locally pure in the neighborhoadnt: = — £, with equal amplitudes,, andv,,, these amplitudes being

H. =2k’By )

~ 2k*B, (6)

of z = 0. defined and related respectively by [1, eqs. 33, 36] (the latter containing
Case 1: For the standard excitation of type 10, we shall refer to - unfortunately an editorial error). We note tiéh — k)u,, is the coeffi-
the combination of a field componeht= k and afield componerit= cient of a®,, function varying as™, caused by sources in the volume

—k, both of them with the same amplitude. Reference [1, egs. 30, outside the generalized screen, whergds— %)v,, is the coefficient

32] shows that the azimuthal componéht of the magnetic field varies of a¥,, function varying as~", caused by current and charges on the

asl/r. It therefore sounds appropriate to define the natural amplitugtieally metallized screen. Using [1, eq. 30], we find that at 0 the

of the standard excitation by the amplitude of the total curienb  combination of both terms with the amplitude allows the compu-

flowing on the ideally metallized screen, which satisfies tation of the quaternion amplitudes of the applied electric fl8td™’
and of the applied magnetic fieH>F*' taking on the value

i\//;o = 271'1‘H9 (l)
EXY =0
forr > ro. E;‘"’] =0
Case 2: For the standard excitation of type, we shall refer to the Erl —
combination of a field componett = % and a field component = H;.?ppl = gjnkr g )
—k, both of them with their amplitudes of opposite values. [1, egs. "%
30, 32] shows that the radial compondt of the electric field varies H™™ = =25,
asl/r. It therefore sounds appropriate to define the natural amplitude H2PPl — .
of the standard excitation by the amplitude of the total chargeon
the ideally metallized screen, which satisfies This formula being valid at = 0, for » > ry,. We shall define the
natural amplitude of the standard excitation by the quantity
= 27eor B,
pro = 2mweor kb, (2) ngpl v ®
forr > ro. po—l 2ry

Case 3: For the standard excitation of tyge oo, we shall refer to
theh = 0 component, with all amplitude distributions equal to zero e
ceptby, andd, related by [1, eq. 35]. We shall note titatcorresponds
to an incident wave, thal, corresponds to a reflected wave and that
andd, are Dirac distributions. We shall nofg, the area

where [1, egs. 34, 36, 37] have been used. In the specialicase
Xl_, we note that (7) shows that the applied magnetic field is uniform,
orthogonal to the axis and that the natural amplitude of the standard
excitation is the amplitude of the applied magnetic field.

Case 5: For a standard excitation of type , with » > 1, we shall

k refer to the combination of a field componént= k and a field com-
/ . bo(h)dh ponenth = —Fk, with opposite amplitudes,, andv,,, these amplitudes

being related by [1, eq. 36]. As previoustyi — k)u,, is the coeffi-

of the distributionho, the unit of By being the amperes meter. We will cient of a®,, function varying as", caused by sources in the volume
define the natural amplitude of the standard excitation by the quasutside the generalized screen, wher&ds— %)v,, is the coefficient
tity 2%” By on the ideally metallized screen, its unit being amperes pefa¥,, function varying as ", caused by current and charges on the
meter. From [1, egs. 30, 35][4, eq. 9.1.27] we can compute the valdeally metallized screen. Using [1, eq. 30], we find that at 0 the

BU:
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combination of both terms with the amplitude allows the compu-  Please note that in the case of the Type 5 coupling, the definitions in
tation of the applied electric fiellE***' and of the applied magnetic [2] and [3] clearly address a standard excitation of tijpe: , whereas
field H**"! taking on the value the corresponding picture shows a combination of two standard exci-
tations of typesyv 41 andjvor.

(B = g2k,
0
EZPPl = 325 'Lk':jz_l Uni IV. HoLLOW CYLINDRICAL SHELL
0
EP' =0 9) If we want to characterize the shielding properties of a hollow cylin-
H2rl =0 drical shell at a given point, we will have to compare a set of physical
Hgl’Pl =0 quantities, regarded as effects, measured in the volume inside the gen-
\ 72PPl = ). eralized screen, to the natural amplitude of a given standard excitation

This formula being valid at = 0, for r > ro. We shall define the which cause them_. In this volumc_a, we know _that itis generally possible

. : Lo . to compute electric and magnetic fields as if the volume was isolated,

natural amplitude of the standard excitation by the quantity provided the effect of external excitations like our standard excitations
Eavrl PLn are taken into account using equivalent sources on its boundary (this

= (10) boundary is the internal boundary of the generalized screen). It is im-
. portant to note that these equivalent internal sources are located at the
where[1, egs. 34, 36, 37] have peen useq. Ir,' thg speqahcasb, we parts of the internal boundary (a surface) where the generalized screen
note that (9) shows that the applied electric field is uniform, Orthogonfg{rlexcited and leaks, whereas the resulting electric and magnetic fields
to the ax?s and that the n_atural am_plit_ude of the standard excitatior}ﬁ%y exists anywhere in the volume inside the generalized screen, even

the amplitude of the applied .ele.ctnc f'eld', ) in the case of an excitation limited to a small part of the generalized
Case 6: For standard excitations of tygeon with » > 1, elec- screen. In addition, equivalent internal sources are to a large extend

tric and magnetic fields are not simple in t_he_neighbor_hood of 0. independent of what could be added in the hollow cylindrical shell,
However, we may produce electromagnetic fields of this type by COMhereas the resulting field are not.

7,n—l 271—507'61

binir:cg il_l h: 0 corlnponent, the amplitude dis;]tributia_r;_l, C"l' b’i' &_m It is therefore appropriate to use the equivalent internal sources, not
d, of which are related by [1, eq_. 35] and by the additiona re_atlon Cafhe resulting fields for the definition of the said physical quantities.
celing Iy, with a component = & and with a componerit = —#, In this paper, we will consider that these quantities are the amplitude

W'tlh opp_osgle ?mprl:tudesn ﬁt Un related ?yh[l' ?q' ?fe]f'_ t%k'ng O(;‘_ & of source terms related to the currents or charges or electric field or

va u%sw;ah ehcit € cance at'onﬁ“:l 0 of the electric field coor ;] magnetic field amplitudes on the external boundary of the generalized

natel, of theh = 0 component. The latter two components are thosg, oo, py 4 finear relation. We will also assume that a finite number of

of a standard exgltatlon of type.... We shaI_I th_erefore simply define these physical quantities allow a good enough accuracy.

the na}ural ?mglltu?ehof the Ztagdard_ ex_cntatlfon of ty p?j”]'(_ asdthe For instance, if we assume that the hollow cylindrical shell has a

hatural amplitude of the standard excitation of type so defined.  ;o1ar cylindrical internal boundary made of a good homogenous
We have just defined the natural amplitude of all standard excit, 5nductor, we can obviously only consider the tangential electric

tions, without any reference to an arbitrary point where field valugg, 4 o, the houndary for the equivalent internal sources. If we denote
would have been measured. Instead, we have considered that theﬁgg(ew:_t) the instantaneous axial component of the tangential
ural amplitude of the standard excitation is measured with an ideally, .4i- field andEso (6, =, t) the instantaneous azimuthal component
metallized screen of arbitrary radius installed in the test setup. The dgf-,, tangential Melectric field, we know that we can expand them
inition of the natural amplitude contains no assumption concerning tnging the quaternion peak amplitudEs 1, (z,«) and Eson (=, w)

size of the cross section of the generalized screen with respect to iwguch a way that ‘ i o
wavelength.

We can note that in the special case of a screen with a cross sec- Eerld _R e et il E e g
tion much smaller than the wavelength a vocabulary has already been sa(6,z,t) =Re J Z San(z,w)e w

n=0

defined in [2] for configurations referred to as “the five main types of (11)
coupling” in [3]. At this point, we can show the relationship between A -
these types of coupling and the types of excitation of this paper: Bso(f. z,t) =Re /°° et {Z Eson (7, w)eine} dw:| .
 a standard excitation of type 4o corresponds to a Type 1 cou- 0 n=0 '
pling, the natural amplitude of the standard excitation being the (12)

axial current, in agreement with (1); E . desired hiah | afan b | d
a standard excitation of type.o corresponds to a Type 2 cou- or a given desired accuracy, higher values alan be neglected.

pling, the natural amplitude of the standard excitation beingvé(e have therefore defined a finite set of the wanted physical quanti-
per-dnit-length charge density, in agreement with (2); ties. We note that if the hollow cylindrical shell had apertures, as in the
a standard excitation of tng'(;o corresponds to a Typ‘)e 3 cou-C@se of amesh or braid, it would have been necessary to also consider

pling, the natural amplitude of the standard excitation being tﬁge instantaneous normal electric field on the boundasy: (6. =. )

amplitude of a uniform axial applied magnetic field, in agreemer‘?tnd the quat_ernion peak amplitude compondis. (z,w) of its ex-
pansion, defined as

with (6);
+ a standard excitation of type 41 corresponds to a Type 5 cou- , o L[S i
pling, the natural amplitude of the standard excitation being theEsr (¢, z,t) = Re / It Z Esrn(z,w)e dw|. (13)
70 n=0

amplitude of a uniform applied magnetic field parallel to the cross
section of the generalized screen, in agreement with (8); If we take into account such a finite set of physical quantities for the

a standard excitation of type,: corresponds to a Type 4 cou-description of the magnitude of the internal equivalent sources, on the
pling, the natural amplitude of the standard excitation being tfee hand and a finite set of natural amplitudes for the measurement
amplitude of a uniform applied electric field parallel to the crosef standard excitations of different types on the other hand, the sup-
section of the generalized screen, in agreement with (10). posedly linear relation between them can be expressed in a matrix con-
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Fig. 2. Short length of shielded multiconductor cable in an external field.

taining the shielding parameters, which we will call “shielding matrix.tan be described using an equivalent schematic containiny the+
This shielding matrix would generally depend on the axial coordinatel ) /2 per-unit-length capacitances between Me- 1 conductors (in-
where the standard excitation is applied and on the axial coordihatecluding N per-unit-length capacitances to the reference conductor) and
where the magnitude of the internal equivalent sources is considered. per-unit-length self-inductances, one on each internal conductor,
We will say that the generalized screen is well-behaved if the imith the associated’ (N — 1)/2 per-unit-length mutual inductances.
ternal equivalent sources at the poinare practically only related to In fact, the per- unit-length capacitance matrix or capacitances describe
the incident field values at the same axial coordinati@ this case, the the effect of the electric field normal to the internal conductors and the
internal equivalent sources need be considered only where the stangerdunit-length inductance matrix or inductances describe the effect of
excitation takes place and the shielding matrix depends on a single aiti@ electric field tangential to the internal conductors.
coordinatez. Thin generalized screens, that is to say screens for whichlf we now consider the internal problem when an external excita-
the thickness of the hollow cylindrical shell is much smaller than th#on is applied, always using the shield as reference conductor, the
wavelength of the incident wave, are expected to be well-behaved (gmtion of the external sources of the field can be represented using
instance, Franceschetti [5] has shown that the homogenous thin shfihl equivalent sources: per-unit-length current sources for the descrip-
can be taken into account using only a discontinuous boundary cortitin of the effect of the electric field normal to the internal conductors
tion, which means that the internal equivalent source depends onlyafrthe cable resulting from the external excitation and per-unit-length
the fields on the opposite side of the screen). Of course, in the casevaitage sources for the description of the effect of the electric field tan-
a well-behaved generalized screen the properties of which do not vgential to the internal conductors of the cable resulting from the ex-
with the axial coordinate, the shielding matrix does not depend-on ternal excitation. Once redundant sources have been canceled, we ob-
either. tain an equivalent circuit in whictV per-unit-length voltage source
The shielding matrix of a well-behaved hollow cylindrical shell iand N per-unit-length current sources have been added to the equiv-
convenient for the characterization of the generalized screen, becaaisat schematic of the cable without external excitation, as shown on
it can obviously be used to compute the amplitude of internal equivalesthematic of Fig. 2 for the casé = 3.
sources and then the internal fields using any appropriate technique&he shielding properties of the shielded cable will be characterized
We note that if the hollow shell is empty, at frequencies below the cuince the complex amplitude of thesd& Jield equivalent sources are
offof the first propagation mode of this waveguide, internal equivastablished for the relevant different standard excitation, as a function
lent sources will only produce evanescent waves, with an essentialfitheir natural amplitude. We note that for standard excitations other
local effect. If the frequency is increased above the cutofffrequendiian the standard excitation of typpeao, of typepr.o and of typejv oo,
the contribution of the internal equivalent sources will propagate atite amplitude of the field equivalent sourcesipriori dependent on
the fields at any point inside the generalized screen will be the resulttbé azimuth anglé of the applied standard excitation.
the summation of the contributions of the excitations along the wholeUnless the structure of the cable is very weird we can assume that
screen’s length and reflections at the termination. If the cylindrical shédir any low impedance standard excitation (standard excitation of type
contains internal conductors along the axis, the picture is obviously.4,, and of typejv . ) we can neglect th&” per-unit-length current
changed because of the presence of a TEM mode available at any $mirces and that for a high impedance standard excitation (standard

quency for the propagation of local contributions. excitation of typepr.,.) we can neglect thé/ per-unit-length voltage
source. In fact passive circuits exist which can convert a low impedance
V. SHIELDED CABLES input into a high impedance output (and vice versa), for instdu@e

Let id hielded cable with a sinale shield Aridt | circuits at the resonance and transformers, but cable shields are not
et us consider a shielded cable with a single shield Airidternal eﬂ)ected to behave that way!

conductors, having a cross section much smaller than the wavelength.
Only quasi-TEM modes can therefore propagate inside the cable shield.
In practice, we are only interested in describing what happens on in-
ternal conductors at each end of a section of cable. In away, the problerif we assume that considering only standard excitation of the type
of the characterization of the shield is replaced by the problem of theao, of the typep.q, of the typejv oo, of the typeiyv 4, and of the
characterization of the cable. type p.1 provides enough accuracy, it is possible to limit the charac-
Let us therefore consider a section of cable shorter than the waterization of a shielded cable to the five types of coupling already men-
lengths of interest. If we first consider the internal problem when rtoned at the end of Section IlI.
external excitation is applied, we know that, using the shield as a ref-In addition, in line with the consideration of the end of Section V on
erence conductor, the interaction between the shield andvthie- field equivalent sources, we will consider that only Type 1 coupling,
ternal conductors can be represented using a square matrix of orfigre 2 coupling, and Type 5 coupling have an effect on the amplitude
N as per-unit-length capacitance matrix and a square matrix of ordgthe N per-unit-length voltage sources and that only Type 2 coupling
N as per-unit-length inductance matrix. Alternatively, this interactioand Type 4 coupling have an effect on the amplitude of Ah@er-

VI. FIVE MAIN TYPES OFCOUPLING
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unit-length current sources. We can now give accurate definitionstbe azimuth of the applied field is a parameter of the induced current.

the shielding parameters for multiconductor shielded cables. However, they can be also viewed as complex numbers dependent on
The Type 1 coupling corresponds to the situation where exterribk relative azimuth between the applied field and the cable. The Type

sources produce a standard excitation of typao, for which the 5 coupling produces, on a length of cable, on the internal conductor

natural amplitude is an axial current. The shielding parameters area voltagedv., equal to

thereforeN' complex per-unit-length transfer impedances (expressed

in 2/m). The Type 1 coupling produces, on a lendthof cable, on dva = ZpraH.d= (18)

the internal conductor, a voltagedv. equal to where Zpr.,, is the parallel transfer impedance for the conductpr

dve = Zraivaods (14) considered as a real quaternion or as an azimuth-dependent complex
number and wherd ; is the amplitude of the uniform applied mag-

where Z; . is the per-unit-length transfer impedance for the internaletic field.
conductor and wheréy 4, is the applied current flowing on the cable  These definitions of coupling parameters are close to the one givenin
shield. [2] and [3], with the exception of the one applicable to Type 4 coupling.

Type 2 coupling corresponds to the situation where external sources
produce a standard excitation of typg, for which the natural am- VII. NATURAL AMPLITUDES FOR THECYLINDER ABOVE A GROUND
plitude is a per-unit-length charge density. The shielding parameters PLANE
are therefqré\ complex frt_equenues \.Nh'Ch we prefer_to write as the In the next paragraph we will compute the amplitude of the field
product ofjw by a dimensionless radial electric coupling coefficient.

. . équivalent sources in two cases of a cable running parallel to a ground
Type 2 coupling produces, on a lengthof cable, on the internal con- : ; -
. plane. Prior to doing this, we need some more general results on the
ductor«, a currentdi, equal to

electrostatic charge distribution on a circular cylinder submitted to an
electric field, from which we will determine the values of the natural
amplitudes.
where(r. is the radial electric coupling coefficient for the conductor We consider an ideal conducting circular cylinder of ragiukaying
o and wherep o is the applied per-unit-length charge density on that a height.—r, above the ideal infinite horizontal ground plane (thatis
cable shield. to say, the axis of the cylinder isabove the ground plane). A uniform
Type 3 coupling corresponds to the situation where external souregdsctrostatic field of intensitf, is applied with field lines orthogonal
produce a standard excitation of typeoo for which the natural am- to the ground plane, for instance using a second infinite plane parallel
plitude is the amplitude of a uniform axial applied magnetic field. Th the ground plane at a height much larger tha# » and connected to
shielding parameters are therefofecomplex transfer impedances (ex-a suitable voltage source. We want to determine the charge distribution
pressed iffi2) which we call axial transfer impedances. Type 3 couplingn the cylinder, using an expansion involving homogenous standard
produces, on a lengtte of cable, on the internal conduciera voltage responsesr..., that is to say a standard responges for a charge
dv, equal to distribution independent of.
In order to achieve this, we start by establishing the electrostatic field
dva = ZaraH-dz (16)  distributions produced by these standard responses. Let us first con-
) ) ) sider the field electric field produced on the cylinder boundary by an
whereZ 1. is the axial transfer impedance for the conduetand  omogenous (i.e., independent:dfdistribution of charges. This field

whereH. is the amplitude of a uniform axial applied magnetic field. 5 ,ormal to the surface and its real amplitdde(d) can be expanded
Type 4 coupling corresponds to the situation where external sourcgs, angular Fourier series ‘

produce a standard excitation of typg;, for which the natural am-
plitude is the amplitude of a uniform applied electric field parallel to
the cross section of the generalized screen. The shielding parameters
are thereforeV transfer admittances (expressedSihwhich we call
parallel transfer admittances. They are real quaternions because the alzsing the well-known amplitudgs /o of the field on the boundary
imuth of the applied field is a parameter of the induced current. How{ a conducting cylinder carrying a surface charge densitand [1,
ever, they can be also viewed as complex numbers dependent onethe 4, 5], we obtain that the complex amplitude of the electric field
relative azimuth between the applied field and the cable. Type 4 cqueoduced by the homogenous standard respansesre given by

pling produces, on a length: of cable, on the internal conductar a

dig = jwCraprodz (15)

Er(f) =Re

i E,/,,e'?"(’} . (19)

n=0

PLn
currentdi, equal to Bin =g "0 (20)
dipg = YproELdz (17) Let us now consider the complex potentjalproduced by a cylin-

drical monopole alone in space placed on the cylinder axis. Taking a
whereYpr,, is the parallel transfer admittance for the conduetpr point on the cylinder axis as origin and choosing the axis vertical,
considered as a real quaternion or as an azimuth-dependent comglescted upward, we obtain (see [6, p. 195]) the potential as a function
number and wher€& , is the amplitude of the uniform applied electricof the cartesian coordinatesandy
field. We note that this parameter is different from the one defined in Po )

[2] and [3] which was later found to be impractical because it involved == 2meg In( +iy) (21)
a charge which could not be easily measured.

Type 5 coupling corresponds to the situation where external sour
produce a standard excitation of tyfie4; for which the natural am-
plitude is the amplitude of a uniform applied magnetic field parall
to the cross section of the generalized screen. The shielding para}n
ters are thereforéy transfer impedances (expressedihwhich we Do 1 po €’

call parallel transfer impedances. They are real quaternions because By +iky = 270 & — iy = 2re0 1 (22)

(%@erepo is the momentum of the cylindrical dipole of order O, that is
to say the per-unit-length charge density. The electric field produced
é‘ the opposite of the conjugate of the derivative of the potential and
grefore
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Comparing this expression with (20) we of course find that the cylin
drical dipole of order 0 produces the same field as an homogenous st
dard response of type.o with an amplitude ;o = po, because in both

X pLOzv;
cases we have the same field on the boundagsy . —

Forn > 1, let us consider the complex potentigl produced by a  pLizv; ‘
cylindrical multipole of order, alone in space at the location of the AT e i e R il LD e
cylinder axis. We now obtain (see [6, p. 203]) e | 1

’ 1 pL3zv; ‘
! n . -
n = — 23 == 1 ‘ w
¢ 2meg (x4 iy)» (23) ‘ |
wherep,, is the moment of the cylindrical multipole of order The 5 ‘ | ‘ |
resulting field produced is simply 1 10
hsr;
. Ji(n+1)8
. _ Pn n _ Pn ne . . . .
E. +iE, = 2mee (w —iy)"tl | 2meg il (24) Fig. 3. The dimensionless coefficienisozv, prizv, prezv andprszyv

as a function of the normalized heighfr, above a ground plane.
Let us also consider the complex potenigl derived from (24)

using an analytic inversion (see [7, pp. 220, 250]). We obtain Considering the symmetry of the problem, the amplitudes of the
- standard responses,, must be real. At any point on the ground
= PL% (25) plane, we haver = —h and we can see that, the real part of the

2mzg 1§ complex potential (the real potential) vanishes. The real part of the

complex potential must take on a constant value on the boundary
of the conducting cylinder. Because of the logarithm, this is only

—pn n(x—iy)""" —p, nen e DO achievable exactly with an infinite number of terms in the series

2meo r2n = 270 r2n - (26) whenever the cylinder is globally charged. If we limit ourselves to

an approximate solution wittdd 4+ 1 terms, (30) is ideal for the

If we now define the complex potential, as¢. = ¢, — (., the computation of the standard responses using the method of moments

The field produced by this complex potential is

E.r + 7V’E‘y =

resulting field at a distance of the cylinder axis is given by with point matching. The system to be solved is
26 26 2
. Pn  nE in6 —ing Pn ne 4h®  4h
E.+iE, = Dy F (e +e ) = — cosnf. (27) pLoln <1 + 2 + . cos 9)
Comparing this result with (20), we find that for> 1, the complex = pim ing (-=1)"
potential¢, produces the same field as the one which exist when an + Z n Reqe - 7(% N ew)n
homogenous standard response of typge with an amplitude n= oo
h
=dweoEoro | cos + — dreV 31
pin = 21,15,7 28) weoEoro <(0b + 7.0> + 4meo (31)

0
whereV is the real potential of the conducting cylinder with respect

exist on the conducting cylinder, because in both cases we have {he,o ground plane, fat/ + 1 values, of the azimuth anglé (the
same field on the bP“”da"YZ ro. origin of @ is the vertical axi$)2 pointing upward), for instanog,, =

We must now give an interpretation to the two components gf,, 57 4 1), for m between 0 and/. We have to consider that
the complex potential,.: the complex potential,, corresponds 10 yhe general solution is a superposition the solutionifos= 0 and of
the field produced by the charge distribution of the homogenowe solution forE, = 0.

standard response.,,, whereas the complex potentigl corresponds

to an external field capable of inducing this charge distribution on
the cylinder. Therefore any homogenous charge distribution on the PInZVv = _Prn (32)
conducting cylinder alone in space, specified using the amplitude of dmeoro Lo

the standard responsgs.. produces a complex potential equalto  and forE, = 0, we have computed (see Fig. 4) the dimensionless

ForV = 0 we have computed (see Fig. 3) the dimensionless

pLO . 1 <= prn ry _ pLnh
== In( + —_— 29 Plnzp = —————
‘ 2meo n(mt ) + dmeo Z n (w4 iy)" (29)

n=1

(33)

drsoroV
) . both as functions ok /r, ranging between 1 and 10 and for= 0 to

Asa S_ecor_'d step, WE can now establish the complex potential Of the 5. Using the universal plots of Figs. 3 and 4 with the proper value

conducting cwculgr cyllndgr abovg the ground plane. We m_ust_conSI%qr[he normalized heiglit/ro, any value 0p o, pr1, prL2, @andprs can

acomplex pot_entlal givenin (2_9), itsimage complex potentlgl (|twouIHe computed if one adds the valuepof, given by (32), corresponding

pe the qpposﬂe of the potential at the opposite of the conjuggte PABthe effect ofF,, to the value of ... given by (33), corresponding to

if the origin was on thg ground pla_ne) and the complex potentl_al of e effect ofi’/h. As expected, we can see that there is little difference

homogenous normal field of amplitude, and we therefore obtain oo the charge distributions #6r= 0 andF, = 0 for high values

of h/rq. One should note that one cannot compute » efficiently

pLo 1 (z+iy)

¢=- dmeo | —x— iy — 2h this way due to a poor convergence whefr, approaches 1. This
oo " " is because the capacitance between the cylinder and the ground plane
+ 1 Z Pln 1 { "o — o - } (proportional toproz+) becomes large and the charge concentrates
dmco 7 L@ +iy)n (—x =iy = 2h)" atd = —n. However, there is a well-known analytic formula for the

—(x+iy+ h)Eo. (30) capacitance between two cylinders (see [7, p. 192]) from whigh »
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2 VIIl. B ASIC IMPLEMENTATION OF THE
//// FIvE MAIN TYPES OFCOUPLING
pLOZE; 1 = ) We will now establish the expression of the field equivalent sources
Efi ‘\s_ for two highly interesting situations of field-to-cable coupling in the
TR ) SE————- LT TP P P N . case of a cable installed above an ideal ground plane: the longitudinal
pL2zf; L R P L AR SRR R M I excitation and the transverse excitation for a cable laying on the ground
o, plane. In the case of the longitudinal excitation, a TEM wave propa-
P O I — T T gates along the cable axis. In the case of the transverse excitation, a
a TEM propagates parallel to the ground plane, orthogonally to the cable
5 axis. The amplitude of the applied field 1.
1 10 We will consider that the generalized screen of the cable of external
hsr; radiusr is in electrical contact with the ground plane, which implies

‘ _ _ N thatV’ = 0 and we will consider only the five main types of coupling.
Fig. 4. Dimensionless coefficients.oz », prizr, prozr, adprszr @asa  According to (15), (17), (34), (35), and (36), the amplitude of the field
function of the normalized heiglit/r, above a ground plane. equivalent current source for the condu ill be

can be computed for any valuefofr,. Such a problem does not occur dia = (2jwneoroCra + 1,29Ypra) Eodz (37)
with prrzv and forh/ro = 1 we obtained

both, in the case of the longitudinal excitation, and transverse
2prozv = 1.00000

excitation.
2pL12v = 1.28987 In the case of the longitudinal excitation, we know that the distri-
2p122v = 0.22849 bution of charges and current are the same except for a multiplicative
2 s = —0.06114 constant (see [8, p. 248]) because we are in the case of a TEM wave

PL3ZV . . . . . . . .

propagating in an ideal waveguide (the cable shield being in contact
2prazv = 0.00956 with the ground plane, they are viewed as a single conductor by the
2pr5zv = 0.00278 TEM wave). We can therefore replaégeby H andpro by iv 4o and
2prezv = — 0.00364 £o by 1in (35) and (36) witH” = 0. Using (14) and (18), we get the

sy = 0.00219 amplitude of the field equivalent voltage source for the conductas

and forn >8 |2pLnzv| < 0.001. (34) dve = (27r0Zre + 1,29 Zora) ?—Ucl;. (38)
This values have been computed far = 20 and forM = 40, 1
with the same results for the number of digits shown. We had a fewlIn the case of the transverse excitation, the applied axial field can be
years ago implemented in [2, Appendix 1] an expansion with only twased directly in (16) and the value of the field equivalent voltage source
terms for an approximate derivation pf,, in the caseh/r, = 1. for the conductor is therefore
A “physical” derivation based on the superposition theorem and the
image theorem had led us to the approximate vatwes.v = 1 and dve = Zara &d:. (39)
2pr1zv = 1 without numerical computation. In order to obtain this No
?hpep;(;Trlnn:J?;earnegsiZI?s gn deo:vqr?v}\//aurzepgziﬁ t?r?é i)z(l]sn\c/)vtlltr;]g[lth:;tk:]a :r:gltﬂeorfThese results can for instange be applied to the case of an electrically
. T - short cable for which propagation effects can be disregarded as well as
(32). This earlier simple derivation was after all not too bad! N 1K betw int | cables. Let ider that the int |
Finally, we can now leave the electrostatic field computation anEle crossta « between internal cables. Let us consider that the interna
onductory, is terminated at the near-end with a linear load connected

translate our results to the case of an ideally metallized circular cylifﬁ- round of impedanc.. and at the far-end with a linear load con-
drical generalized screen of electrically small cross section. We wis 9 p Lo

to know the natural amplitudes of the high impedance standard excfggpted to ground of impedand... We obtain the following values

tions when the axis runs parallel to a ground plane. r the near-end induced voltage. and the far-end induced voltage

Forn = 0, the natural amplitude can be computed using (2), (32" in the case of the longitudinal excitation:
and (33), using a suitable combinationmf, 2 andprozr, as

Via Zla B
— =—————{1,29(Zpra 2710 4T o
£ Vv (35) (Ey 1o (Zia + Z2a) {1,29(Zpra) + 2770270}
prLo = 4msorg < opLozv + —I)LOZF) . 7 7
h SRy 11,29(Y] 2jweomro
+ Zow £ Zo0) {1,29(Ypra) + 2jwsomroCRa }
The value oft” can be computed from the relation between the current (40)
injected on the cable (relateda.~v ), the capacitance to ground (re- and
lated top 10~ #) and the impedances to which the section of generalized | —Zoa
screen is connected at each end. (Bo 0 (Zio + Zow) {1.29(Zpra) + 2770270 }
Forn > 1,V being now a known quantity, the natural amplitude de- ZvaTs
fined by (10) can be computed from a suitable combinatiomof, 1 + m {1,29 Ypra) + 2jwzonmroCRra }
andp,.zx as “ “ (a1)
Faprl 2 v
=1 o=t <E0PLnZV + ﬁPLnZF) (36)  wheret is the length of cable submitted to the field, whé-r..) is

the average of p1 . in the direction of the magnetic field, and where
where (32) and (33) have been used. (Ypra) is the average dfpr. in the direction of the electric field.



588

In the case of the transverse excitation, we get

_ Zlu
"o (Z1a + Zaa)
ZlaZQa

+ m {17 29 <YPTu> + QjWSOTW'OCRu}

Vi

{Ey

Zar

(42)
and

V2o

(Ey

_Z"&
o (Zla +Z2a) AT
ZluZZLy I i
(Zia + Zoa) 1*29 Y o 2jwegTr Lo f -
* (Z1L1+Z2a) L < PT >+ J 0770(5 }

(43)

(1]

(2]
(3]

(4]
(5]

(6]
(7]
(8]

We note that even though (40)—(43) use quaternions, all terms carjg)

be considered as complex numbers, because the azimuthéadgle

pendency has been suppressed by the averaging. Measurement results
for these voltages, as obtained in a Crawford cell [2] and in a GTEM
cell [3] have already been published. The approximate formula for the

near-end and far-end voltages in these papers should be replaced with

(40)—(43), but their contents remains otherwise valid.

IX. CONCLUSION

In this paper we have built on basic concepts like the canonical
composition of the tangential response on a generalized shield an
definition of standard excitations, already introduced in [1], in orde!
present:

* idea of replacing the exact boundary of the screen with the
cular cylindrical boundary of a generalized screen;

« definition of natural amplitudes;

» method for the implementation of these tools for the charact
zation of cylindrical shells and shielded cable.

This approach of characterization is not perfect and does not s
all problems. When we arbitrarily consider a generalized screen \
an outer shape differing a lot from the conducting screen, we m
increasingly:

« fail to be able to solve rigorously problems with field sourc
outside the conducting screen, but falling inside the generali
screen;

» and have to rely more heavily on the speculative aspects of
conjecture of Section Il to solve some problems.

We have given new definitions for the five main types of coupli
of a shielded cable. These definitions are essentially different from
earlier version: they are not intuitive definitions believed to give an
curate picture of the coupling for a circular cylindrical shield, but t
consequence of general basic concepts applicable to both cylinc
shells and shielded cables. We can now see how the five main typ
coupling are the first terms of an expansion and understand the ur
lying assumptions. If case of need, the consequences of limiting o
analysis to the five main types of coupling can now be understood
overcome.

In addition, this paper also contains the computation of the nat
amplitudes of the electrical standard excitation for a circular cylindri
generalized screen of electrically small cross section and, for cal
the accurate computation of induced voltages and currents.
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