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Characterization of a Cylindrical Screen for External
Excitations and Application to Shielded Cables

Frédéric Broydé and Evelyne Clavelier

Abstract—The main purpose of this paper is to present the definition
of sets of parameters, which provide an intrinsic characterization of the
shielding performances of a cylindrical generalized screen submitted to
an external field. As examples, we detail two implementations of this
approach at the end of the paper, for the computation of the voltages
induced by an incident field on a short section of a multiconductor
shielded cable. More precisely, our approach is based on an expansion of
the fields which may excite the generalized screen, into a combination of
“standard excitations.” They are defined in such a way that the shielding
performances for a given standard excitation can be characterized in
a simple manner, for instance, a single scalar parameter. In the case
of shielded cables of electrically small cross section, this leads us to
the rigorous introduction of the parameters for the “five main types
of coupling,” for which some experimental results have already been
published. We then establish the exact induced current and voltage on
a section of cable running above a ground plane, when an incident field
propagates parallel to the ground plane, in the case of a longitudinal
excitation, and in the case of a transverse excitation. We use these
results to provide the value of the voltages at each end of a short
section of cable characterized with the parameters for the five main
types of coupling.

Index Terms—Axial transfer impedance, cable, cylindrical screen, elec-
tromagnetic (EM) coupling, parallel transfer admittance, parallel transfer
impedance, per-unit-length transfer impedance, quaternions, radial elec-
tric coupling coefficient, shielded multiconductor cable, shielding, shielding
matrix, standard excitation, standard response.
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I. INTRODUCTION

It is well known that the per-unit-length transfer impedance is
suitable parameter for characterizing the shielding performances
a coaxial cable with a homogenous screen. This characterizatio
known to be intrinsic to the cable (i.e., it describes only the coax
cable, not the cable behavior in a given measurement setup) an
can be used to compute the induced signal in any configuration of
cable. This paper addresses the similar (but more general) questio
the characterization of the shielding performances of a cylindrical ge
eralized screen, for instance, the shield of a multiconductor shield
cable of noncircular cross section. We will consider that the gener
ized screen is submitted to an external field. The behavior of the scr
in this external field being complicated, it is generally not possible
find a simple parameter to characterize the shielding performance of
screen in any external field. We will therefore use a divide and conq
approach. We will implement some sort of expansion of the appli
field into a combination of “standard excitations,” so chosen that w
can use a small number of parameters (ideally a single scalar) for
characterization of the generalized screen for each standard excita

In an earlier paper presenting the theoretical basis of our appro
to the modeling of the shielding properties of cylindrical shields
arbitrary cross section [1], we introduced several definitions for t
time-dependent current and charges on the generalized screen: the
per-unit-length charge density�L(u2; z; t), the local azimuthal per-
unit-length current densityjV O(u2; z; t) and the local axial current on
the screeniV A(u2; z; t). These three real quantities are all depende
on the curvilinear coordinatesu2 andz on the screen and on the time
t and can be, respectively, expressed in C/m, A/m, and A.
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Using a Fourier series expansion with respect to the azimuthal coo
dinateu2, we then defined the amplitudes�Ln(z; t), jV On(z; t), and
iV An(z; t) of the spectral components, wheren 2 . Forn = 0, they
are time-dependent real functions of the coordinatez, and forn > 0,
they are time-dependent complex functions of the coordinatez.

We then applied a transform consisting of a variation of the Fourie
transform on the time variable of these complex functions of timet
andz. The result of this transform is a function of the radian frequency
! and ofz, into the field of Hamilton’s quaternions. We will denoteiii
andjjj the two real quaternions with a square equal to�1, respectively,
corresponding to an angular phase of�=2 and to a frequential phase of
�=2. In the following, using the same notations for the time-dependen
quantities and for the frequency- dependent quantities, amplitudes lik
�Ln(z; !), jV On(z; !) andiV An(z; !) will be real quaternions and
theexp(iiinu2) andexp(jjj!t) dependencies will be omitted.

We showed that the conservation of charges on the cylinder
equivalent to a simple formula ([1, eqs. 17, 18]), relating�Ln(z; !),
jV On(z; !), andiV An(z; !) of same indexn.

We introduced the wording tangential response: it was defined alon
the shield as a distribution of the tangential component of the local cu
rent vector and a distribution of the local per-unit-length charge den
sity. Standard responses were defined as tangential responses wh
can be described using only, for a single value ofn, a single amplitude
jV On(z; !) or iV An(z; !) or �Ln(z; !). According to the case, the
standard response is said of typejV On, or iV An or �Ln. Any tangen-
tial response of a cylindrical screen, has a unique decomposition in
standard responses.

We decided to call “standard excitation at pointz” an electromag-
netic field distribution created by sources in the volume outside th
generalized screen, which would give rise to a locally pure standar
response at this pointz, if the generalized screen was “ideally metal-
lized,” that is to say replaced with a screen having the same extern
boundary, made perfectly conducting.

In this paper, this theoretical construction will be applied to the char
acterization of cylindrical generalized screens submitted to the field
of sources in the volume outside the generalized screen. In the ca
of cylindrical shells, our theory introduces a shielding matrix for the
characterization of the screen. In the case of multiconductor shielde
cables, this will allow to justify, enhance, and extend our results show
in earlier papers on the five main types of coupling [2], [3].

II. CHOICE OF THEEXTERNAL BOUNDARY

Any characterization of the shielding performances of a generalize
screen is based on a classification of the possible excitations. For ea
class of excitation, a “shielding parameter” is then defined, which char
acterizes the screen’s shielding capability. According to our approac
the classification will be based on the use of standard excitations
every pointz along the screen. Thus, we will have to define such a
shielding parameter for each type of standard excitation. It will be don
in Section IV for empty shells and in Section V for multiconductor
cables.

Prior to this, we must investigate the relevance of this classification
The classification can be regarded as relevant only if, for any give
type of excitation, the response of the shield to any excitation of thi
type is similar. For instance, as shown in [1, Secs. VII. B, VII. C] for
the special case of a circular cylindrical external boundary, there a
generally several combinations of impinging cylindrical waves with
different angles of incidence (related to the free parameterh), which
produce a standard excitation of the same type at a pointz.
17.00 © 2002 IEEE
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Fig. 1. Flat multiconductor shielded cable: (a) with its screen appearing as a dark area and (b), (c), and (d) with several possible generalized screens containing
the cable screen.
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If the generalized screen which we wish to characterize had an
ternal boundary with electromagnetic properties close enough from
properties of the ideally metallized generalized screen, any standar
citation of a given type at a pointz would, by definition, induce a locally
pure standard response of the same type at the pointz and, therefore,
the same currents and the same charges on the screen. The beha
the screen at the pointz would therefore be the same. Our classificati
is necessarily relevant for such screens.

However, at this stage, we are not able to establish how similar
currents and charges induced by two different standard excitation
the same type at pointz would be, when the generalized screen und
consideration has an external boundary with electromagnetic pro
ties differing from those of the ideally metallized generalized scre
This is why we will accept the following conjecture for the implemen
tion of our classification to shields differing from the ideally metallize
generalized screen. We assume that any two standard excitations
same type at pointz will give rise to the same behavior of the screen
this point. This conjecture can be viewed as an approximation con
ered as satisfactory without further examination. The conjecture w
for instance, be useful when we want to characterize a screen ha
a structure that does not allow charges to flow in any direction on
screen’s surface, or when the conducting part of the screen differs
the outer boundary of the generalized screen.

We have also to consider how a characterization can be impleme
experimentally and theoretically. Experimentally, for the measurem
of the said shielding parameters, a generalized screen under stud
be inserted in test setups capable of producing standard excita
of different types. A different test jig will be needed for each ou
boundary and each type of standard excitation. Obviously, for econ
ical reasons, few setups will be implemented and only for the simp
generalized screen outer boundaries. On the other hand, the the
ical implementation of the characterization of a generalized screen
typically require, first the computation of incident fields, then, the e
pansion into a sum of as many standard excitations as needed fo
desired accuracy, and, finally, the computation of the amplitude c
pled through the shield using the shielding parameters for each of t
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standard excitations. From the considerations of [1, Secs.VII, VIII, IX],
we understand that an expansion into a sum of standard excitations ca
only be carried out for the simplest shapes of the external boundary o
the generalized screen.

Fortunately, the concept of generalized screen is flexible and a firs
given generalized screen can be combined with an exclusion volum
(see [1, Sec. I]) in order to create a second generalized screen with
simpler geometry of the external boundary. If, for instance, we wish
to characterize the screen of a flat multiconductor screened cable th
cross section of which is shown in Fig. 1 (a), we will not try to com-
pute the standard excitations for a generalized screen having the sam
boundaries as the cable screen! We may instead consider a generaliz
screen with a simpler external boundary containing the cable screen
for instance, a generalized screen with a rectangular cylinder as ex
ternal boundary, as shown in Fig. 1(b), or a generalized screen with
simpler elliptical cylinder as external boundary, as shown in Fig. 1 (c),
or a generalized screen with a—simplest—circular cylinder as externa
boundary, as shown in Fig. 1 (d). In the different drawings of Fig. 1,
the hatched areas represent the exclusion volumes and the dark are
represent the screen of the flat cable.

In the remaining parts of this paper, we will therefore only consider
the case of a general screen having an outer boundary of revolution
Using the idea of the simplification the outer boundary and our con-
jecture, the following will nevertheless be applicable to generalized
screens with other outer shapes.

III. N ATURAL AMPLITUDE OF A STANDARD EXCITATION

In order to characterize the shielding performances of a general
ized screen, for instance, at an angular frequency! and at the point
z, we will have to compare a set of physical quantities measured in the
volume inside the generalized screen, to a value characteristics of th
amplitude of the field distribution of a given type of standard excitation,
in the neighborhood ofz = 0. Defining the latter value is the purpose
of this paragraph.
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The first idea for the definition of the amplitude of a given type o
standard excitation, would be to use the amplitude of the electric fi
or the amplitude of the magnetic field, at a reference point taken
the volume outside the generalized screen, for one of the standard
citation of this type. It would seem natural to use the amplitude o
magnetic field for the standard excitations of typeiV An andjV On and
to use the amplitude of an electric field for the standard excitations
type�Ln.

This approach based on a field amplitude at an arbitrary refere
point calls for two remarks.

1) It is obvious that by using an arbitrary point in the volume outsid
the generalized screen, the angle of incidence plays an unwan
role.

2) Also, the more or less arbitrary radius of the generalized scre
(see Section II) is likely to play an unnecessary role.

We shall, in the following, in the case of a generalized shield with
outer boundary of circular cross section of radiusr0, define the “nat-
ural amplitude” of a standard excitation in a way which will avoid thes
shortcomings. In order to accomplish this, we shall consider that
amplitude is determined with an ideally metallized screen inserted
the test setup and refer to the electromagnetic field distributions deri
at [1, Sec. VII. C], each of them belonging to a given standard exci
tion at the pointz = 0 and being defined by a combination of field
components. Each field component corresponds to a given value of
propagation constanth, which can take on values in the interval [�k,
k], k being the wave number. Thus, there are six cases to be consid
in the definition of the natural amplitudes, each of them correspond
to a standard excitation of a given type locally pure in the neighborho
of z = 0.

Case 1: For the standard excitation of typeiV A0, we shall refer to
the combination of a field componenth = k and a field componenth =
�k, both of them with the same amplitudec0. Reference [1, eqs. 30,
32] shows that the azimuthal componentH� of the magnetic field varies
as1=r. It therefore sounds appropriate to define the natural amplitu
of the standard excitation by the amplitude of the total currentiV A0

flowing on the ideally metallized screen, which satisfies

iV A0 = 2�rH� (1)

for r � r0.
Case 2: For the standard excitation of type�L0 we shall refer to the

combination of a field componenth = k and a field componenth =
�k, both of them with their amplitudesc0 of opposite values. [1, eqs.
30, 32] shows that the radial componentEr of the electric field varies
as1=r. It therefore sounds appropriate to define the natural amplitu
of the standard excitation by the amplitude of the total charge�L0 on
the ideally metallized screen, which satisfies

�L0 = 2�"0rEr (2)

for r � r0.
Case 3: For the standard excitation of typejV O0, we shall refer to

theh = 0 component, with all amplitude distributions equal to zero e
ceptb0, andd0 related by [1, eq. 35]. We shall note thatb0 corresponds
to an incident wave, thatd0 corresponds to a reflected wave and thatb0
andd0 are Dirac distributions. We shall noteB0 the area

B0 =
k

�k

b0(h)dh (3)

of the distributionb0, the unit ofB0 being the amperes meter. We will
define the natural amplitude of the standard excitation by the qu
tity 2k2B0 on the ideally metallized screen, its unit being amperes p
meter. From [1, eqs. 30, 35][4, eq. 9.1.27] we can compute the va
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of the axial componentHz of the magnetic field forr � r0 using
Hankel’s functions

Hz = 2k2B0
H

(1)
0 (kr)H

(2)
1 (kr0)�H

(2)
0 (kr)H

(1)
1 (kr0)

2H
(2)
1 (kr0)

: (4)

Which, using [4, 9.1.17] may be simplified into

Hz = 2k2B0
2jjj

�krH
(2)
1 (kr)

: (5)

We note that if the generalized screen has a small radius compar
to wavelength, (5) can be transformed using [4, 9.1.9] into

Hz = 2k2B0
jjj (Y0(kr)J1 (kr0)� J0(kr)Y1 (kr0))

J1 (kr0)� jjjY1 (kr0)
� 2k2B0 (6)

valid for 1 � kr � kr0. When and where these assumptions are valid
the ideally metallized screen is therefore surrounded by a homogeno
axial magnetic field. We shall note that, because an infinite solenoida
current sheet of small radius compared to wavelength does not produ
any external field (the magnetic field is trapped into the sheet). The fiel
given by (6) is also equal to the field applied by the external sources o
the test setup. In the case of a generalized screen of small radius co
pared to wavelength, the chosen natural amplitude is therefore equal
the magnitude of the homogenous axial magnetic field in the vicinity
of the outer boundary, also equal to the applied axial magnetic field.

Case 4: For a standard excitation of typeiV An with n � 1we shall
refer to the combination of a field componenth = k and a field compo-
nenth = �k, with equal amplitudesun andvn, these amplitudes being
defined and related respectively by [1, eqs. 33, 36] (the latter containin
unfortunately an editorial error). We note that�(h�k)un is the coeffi-
cient of a�n function varying asrn, caused by sources in the volume
outside the generalized screen, whereas�(h � k)vn is the coefficient
of a	n function varying asr�n, caused by current and charges on the
ideally metallized screen. Using [1, eq. 30], we find that atz = 0 the
combination of both terms with the amplitudeun allows the compu-
tation of the quaternion amplitudes of the applied electric fieldEappl

and of the applied magnetic fieldHappl taking on the value

Eappl
r = 0

Eappl
� = 0

Eappl
z = 0

Happl
r = 2jjj nkr

� r
uniii

Happl
� = �2jjj nkr

� r
un

Happl
z = 0:

(7)

This formula being valid atz = 0, for r � r0. We shall define the
natural amplitude of the standard excitation by the quantity

Happl
�

rn�1
=

iV An
2�rn0

(8)

where [1, eqs. 34, 36, 37] have been used. In the special casen =
1, we note that (7) shows that the applied magnetic field is uniform
orthogonal to the axis and that the natural amplitude of the standa
excitation is the amplitude of the applied magnetic field.

Case 5: For a standard excitation of type�Ln with n � 1, we shall
refer to the combination of a field componenth = k and a field com-
ponenth = �k, with opposite amplitudesun andvn, these amplitudes
being related by [1, eq. 36]. As previously,�(h � k)un is the coeffi-
cient of a�n function varying asrn, caused by sources in the volume
outside the generalized screen, whereas�(h � k)vn is the coefficient
of a	n function varying asr�n, caused by current and charges on the
ideally metallized screen. Using [1, eq. 30], we find that atz = 0 the
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combination of both terms with the amplitudeun allows the compu-
tation of the applied electric fieldEappl and of the applied magnetic
field Happl taking on the value

Eappl
r = �2jjj nkr

r
un

E
appl

�
= �2jjj nkr

r
uniii

Eappl
z = 0

Happl
r = 0

H
appl

�
= 0

Happl
z = 0:

(9)

This formula being valid atz = 0, for r � r0. We shall define the
natural amplitude of the standard excitation by the quantity

Eappl
r

rn�1
=

�Ln

2�"0rn0
(10)

where [1, eqs. 34, 36, 37] have been used. In the special casen = 1, we
note that (9) shows that the applied electric field is uniform, orthogo
to the axis and that the natural amplitude of the standard excitatio
the amplitude of the applied electric field.

Case 6: For standard excitations of typejV On with n � 1, elec-
tric and magnetic fields are not simple in the neighborhood ofz = 0.
However, we may produce electromagnetic fields of this type by co
bining ah = 0 component, the amplitude distributionan, cn, bn, and
dn of which are related by [1, eq. 35] and by the additional relation ca
celingH� , with a componenth = k and with a componenth = �k,
with opposite amplitudesun et vn related by [1, eq. 36], taking on a
value suitable for the cancellation atz = 0 of the electric field coordi-
nateEr of theh = 0 component. The latter two components are tho
of a standard excitation of type�Ln. We shall therefore simply define
the natural amplitude of the standard excitation of typejV On, as the
natural amplitude of the standard excitation of type�Ln so defined.

We have just defined the natural amplitude of all standard exc
tions, without any reference to an arbitrary point where field valu
would have been measured. Instead, we have considered that the
ural amplitude of the standard excitation is measured with an ide
metallized screen of arbitrary radius installed in the test setup. The
inition of the natural amplitude contains no assumption concerning
size of the cross section of the generalized screen with respect to
wavelength.

We can note that in the special case of a screen with a cross
tion much smaller than the wavelength a vocabulary has already b
defined in [2] for configurations referred to as “the five main types
coupling” in [3]. At this point, we can show the relationship betwee
these types of coupling and the types of excitation of this paper:

• a standard excitation of typeiV A0 corresponds to a Type 1 cou
pling, the natural amplitude of the standard excitation being
axial current, in agreement with (1);

• a standard excitation of type�L0 corresponds to a Type 2 cou
pling, the natural amplitude of the standard excitation being
per-unit-length charge density, in agreement with (2);

• a standard excitation of typejV O0 corresponds to a Type 3 cou
pling, the natural amplitude of the standard excitation being
amplitude of a uniform axial applied magnetic field, in agreeme
with (6);

• a standard excitation of typeiV A1 corresponds to a Type 5 cou
pling, the natural amplitude of the standard excitation being
amplitude of a uniform applied magnetic field parallel to the cro
section of the generalized screen, in agreement with (8);

• a standard excitation of type�L1 corresponds to a Type 4 cou
pling, the natural amplitude of the standard excitation being
amplitude of a uniform applied electric field parallel to the cro
section of the generalized screen, in agreement with (10).
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Please note that in the case of the Type 5 coupling, the definitions
[2] and [3] clearly address a standard excitation of typeiV A1, whereas
the corresponding picture shows a combination of two standard ex
tations of typesiV A1 andjV O1.

IV. HOLLOW CYLINDRICAL SHELL

If we want to characterize the shielding properties of a hollow cylin
drical shell at a given pointz, we will have to compare a set of physical
quantities, regarded as effects, measured in the volume inside the g
eralized screen, to the natural amplitude of a given standard excitat
which cause them. In this volume, we know that it is generally possib
to compute electric and magnetic fields as if the volume was isolate
provided the effect of external excitations like our standard excitation
are taken into account using equivalent sources on its boundary (t
boundary is the internal boundary of the generalized screen). It is im
portant to note that these equivalent internal sources are located at
parts of the internal boundary (a surface) where the generalized scre
is excited and leaks, whereas the resulting electric and magnetic fie
may exists anywhere in the volume inside the generalized screen, e
in the case of an excitation limited to a small part of the generalize
screen. In addition, equivalent internal sources are to a large exte
independent of what could be added in the hollow cylindrical shel
whereas the resulting field are not.

It is therefore appropriate to use the equivalent internal sources, n
the resulting fields for the definition of the said physical quantities
In this paper, we will consider that these quantities are the amplitu
of source terms related to the currents or charges or electric field
magnetic field amplitudes on the external boundary of the generaliz
screen, by a linear relation. We will also assume that a finite number
these physical quantities allow a good enough accuracy.

For instance, if we assume that the hollow cylindrical shell has
circular cylindrical internal boundary made of a good homogenou
conductor, we can obviously only consider the tangential electr
field on the boundary for the equivalent internal sources. If we deno
ESA(�; z; t) the instantaneous axial component of the tangentia
electric field andESO(�; z; t) the instantaneous azimuthal componen
of the tangential electric field, we know that we can expand them
using the quaternion peak amplitudesESAn(z; !) andESOn(z; !)
in such a way that

ESA(�; z; t) =Re
1

0

ejjj!t
1

n=0

ESAn(z; !)e
iiin� d!

(11)

ESO(�; z; t) =Re
1

0

ejjj!t
1

n=0

ESOn(z; !)e
iiin� d! :

(12)

For a given desired accuracy, higher values ofn can be neglected.
We have therefore defined a finite set of the wanted physical quan
ties. We note that if the hollow cylindrical shell had apertures, as in th
case of a mesh or braid, it would have been necessary to also cons
the instantaneous normal electric field on the boundaryESR(�; z; t)
and the quaternion peak amplitude componentsESRn(z;!) of its ex-
pansion, defined as

ESR(�; z; t) = Re
1

0

ejjj!t
1

n=0

ESRn(z; !)e
iiin� d! : (13)

If we take into account such a finite set of physical quantities for th
description of the magnitude of the internal equivalent sources, on t
one hand and a finite set of natural amplitudes for the measureme
of standard excitations of different types on the other hand, the su
posedly linear relation between them can be expressed in a matrix c
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Fig. 2. Short length of shielded multiconductor cable in an external field.
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taining the shielding parameters, which we will call “shielding matrix
This shielding matrix would generally depend on the axial coordinatz

where the standard excitation is applied and on the axial coordinatz
0

where the magnitude of the internal equivalent sources is consider
We will say that the generalized screen is well-behaved if the

ternal equivalent sources at the pointz are practically only related to
the incident field values at the same axial coordinatez. In this case, the
internal equivalent sources need be considered only where the stan
excitation takes place and the shielding matrix depends on a single a
coordinatez. Thin generalized screens, that is to say screens for wh
the thickness of the hollow cylindrical shell is much smaller than t
wavelength of the incident wave, are expected to be well-behaved
instance, Franceschetti [5] has shown that the homogenous thin s
can be taken into account using only a discontinuous boundary co
tion, which means that the internal equivalent source depends onl
the fields on the opposite side of the screen). Of course, in the cas
a well-behaved generalized screen the properties of which do not
with the axial coordinatez, the shielding matrix does not depend onz

either.
The shielding matrix of a well-behaved hollow cylindrical shell

convenient for the characterization of the generalized screen, bec
it can obviously be used to compute the amplitude of internal equiva
sources and then the internal fields using any appropriate techniq
We note that if the hollow shell is empty, at frequencies below the c
offof the first propagation mode of this waveguide, internal equiv
lent sources will only produce evanescent waves, with an essent
local effect. If the frequency is increased above the cutofffrequen
the contribution of the internal equivalent sources will propagate a
the fields at any point inside the generalized screen will be the resu
the summation of the contributions of the excitations along the wh
screen’s length and reflections at the termination. If the cylindrical sh
contains internal conductors along the axis, the picture is obviou
changed because of the presence of a TEM mode available at any
quency for the propagation of local contributions.

V. SHIELDED CABLES

Let us consider a shielded cable with a single shield andN internal
conductors, having a cross section much smaller than the wavelen
Only quasi-TEM modes can therefore propagate inside the cable sh
In practice, we are only interested in describing what happens on
ternal conductors at each end of a section of cable. In a way, the prob
of the characterization of the shield is replaced by the problem of
characterization of the cable.

Let us therefore consider a section of cable shorter than the w
lengths of interest. If we first consider the internal problem when
external excitation is applied, we know that, using the shield as a
erence conductor, the interaction between the shield and theN in-
ternal conductors can be represented using a square matrix of o
N as per-unit-length capacitance matrix and a square matrix of o
N as per-unit-length inductance matrix. Alternatively, this interacti
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can be described using an equivalent schematic containing theN(N +
1)=2 per-unit-length capacitances between theN + 1 conductors (in-
cludingN per-unit-length capacitances to the reference conductor) an
N per-unit-length self-inductances, one on each internal conducto
with the associatedN(N � 1)=2 per-unit-length mutual inductances.
In fact, the per- unit-length capacitance matrix or capacitances descri
the effect of the electric field normal to the internal conductors and th
per-unit-length inductance matrix or inductances describe the effect
the electric field tangential to the internal conductors.

If we now consider the internal problem when an external excita
tion is applied, always using the shield as reference conductor, th
action of the external sources of the field can be represented usi
field equivalent sources: per-unit-length current sources for the descri
tion of the effect of the electric field normal to the internal conductors
of the cable resulting from the external excitation and per-unit-lengt
voltage sources for the description of the effect of the electric field tan
gential to the internal conductors of the cable resulting from the ex
ternal excitation. Once redundant sources have been canceled, we
tain an equivalent circuit in whichN per-unit-length voltage source
andN per-unit-length current sources have been added to the equ
alent schematic of the cable without external excitation, as shown o
schematic of Fig. 2 for the caseN = 3.

The shielding properties of the shielded cable will be characterize
once the complex amplitude of these 2N field equivalent sources are
established for the relevant different standard excitation, as a functio
of their natural amplitude. We note that for standard excitations othe
than the standard excitation of typeiV A0, of type�L0 and of typejV O0,
the amplitude of the field equivalent sources isa priori dependent on
the azimuth angle� of the applied standard excitation.

Unless the structure of the cable is very weird we can assume th
for any low impedance standard excitation (standard excitation of typ
iV An and of typejV On) we can neglect theN per-unit-length current
sources and that for a high impedance standard excitation (standa
excitation of type�Ln) we can neglect theN per-unit-length voltage
source. In fact passive circuits exist which can convert a low impedan
input into a high impedance output (and vice versa), for instanceLC
circuits at the resonance and transformers, but cable shields are
expected to behave that way!

VI. FIVE MAIN TYPES OFCOUPLING

If we assume that considering only standard excitation of the typ
iV A0, of the type�L0, of the typejV O0, of the typeiV A1 and of the
type�L1 provides enough accuracy, it is possible to limit the charac
terization of a shielded cable to the five types of coupling already men
tioned at the end of Section III.

In addition, in line with the consideration of the end of Section V on
field equivalent sources, we will consider that only Type 1 coupling
Type 2 coupling, and Type 5 coupling have an effect on the amplitud
of theN per-unit-length voltage sources and that only Type 2 couplin
and Type 4 coupling have an effect on the amplitude of theN per-
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unit-length current sources. We can now give accurate definition
the shielding parameters for multiconductor shielded cables.

The Type 1 coupling corresponds to the situation where exte
sources produce a standard excitation of typeiV A0 for which the
natural amplitude is an axial current. The shielding parameters
thereforeN complex per-unit-length transfer impedances (expres
in 
=m). The Type 1 coupling produces, on a lengthdz of cable, on
the internal conductor�, a voltagedv� equal to

dv� = ZT�iV A0dz (14)

whereZT� is the per-unit-length transfer impedance for the inter
conductor� and whereiV A0 is the applied current flowing on the cabl
shield.

Type 2 coupling corresponds to the situation where external sou
produce a standard excitation of type�L0 for which the natural am-
plitude is a per-unit-length charge density. The shielding parame
are thereforeN complex frequencies which we prefer to write as t
product ofj! by a dimensionless radial electric coupling coefficie
Type 2 coupling produces, on a lengthdz of cable, on the internal con
ductor�, a currentdi� equal to

di� = jjj!�R��L0dz (15)

where�R� is the radial electric coupling coefficient for the conduct
� and where�L0 is the applied per-unit-length charge density on t
cable shield.

Type 3 coupling corresponds to the situation where external sou
produce a standard excitation of typejV O0 for which the natural am-
plitude is the amplitude of a uniform axial applied magnetic field. T
shielding parameters are thereforeN complex transfer impedances (ex
pressed in
) which we call axial transfer impedances. Type 3 coupli
produces, on a lengthdz of cable, on the internal conductor�, a voltage
dv� equal to

dv� = ZAT�Hzdz (16)

whereZAT� is the axial transfer impedance for the conductor� and
whereHz is the amplitude of a uniform axial applied magnetic field

Type 4 coupling corresponds to the situation where external sou
produce a standard excitation of type�L1, for which the natural am-
plitude is the amplitude of a uniform applied electric field parallel
the cross section of the generalized screen. The shielding param
are thereforeN transfer admittances (expressed inS) which we call
parallel transfer admittances. They are real quaternions because th
imuth of the applied field is a parameter of the induced current. Ho
ever, they can be also viewed as complex numbers dependent o
relative azimuth between the applied field and the cable. Type 4 c
pling produces, on a lengthdz of cable, on the internal conductor�, a
currentdi� equal to

di� = YPT�E?dz (17)

whereYPT� is the parallel transfer admittance for the conductor�,
considered as a real quaternion or as an azimuth-dependent com
number and whereE? is the amplitude of the uniform applied electr
field. We note that this parameter is different from the one defined
[2] and [3] which was later found to be impractical because it involv
a charge which could not be easily measured.

Type 5 coupling corresponds to the situation where external sou
produce a standard excitation of typeiV A1 for which the natural am-
plitude is the amplitude of a uniform applied magnetic field para
to the cross section of the generalized screen. The shielding par
ters are thereforeN transfer impedances (expressed in
) which we
call parallel transfer impedances. They are real quaternions bec
s of
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the azimuth of the applied field is a parameter of the induced curren
However, they can be also viewed as complex numbers dependent
the relative azimuth between the applied field and the cable. The Typ
5 coupling produces, on a lengthdz of cable, on the internal conductor
�, a voltagedv� equal to

dv� = ZPT�H?dz (18)

whereZPT� is the parallel transfer impedance for the conductor�,
considered as a real quaternion or as an azimuth-dependent comp
number and whereH? is the amplitude of the uniform applied mag-
netic field.

These definitions of coupling parameters are close to the one given
[2] and [3], with the exception of the one applicable to Type 4 coupling

VII. N ATURAL AMPLITUDES FOR THECYLINDER ABOVE A GROUND

PLANE

In the next paragraph we will compute the amplitude of the field
equivalent sources in two cases of a cable running parallel to a grou
plane. Prior to doing this, we need some more general results on t
electrostatic charge distribution on a circular cylinder submitted to a
electric field, from which we will determine the values of the natural
amplitudes.

We consider an ideal conducting circular cylinder of radiusr0 laying
at a heighth�r0 above the ideal infinite horizontal ground plane (that is
to say, the axis of the cylinder ish above the ground plane). A uniform
electrostatic field of intensityE0 is applied with field lines orthogonal
to the ground plane, for instance using a second infinite plane parall
to the ground plane at a height much larger thanr0+h and connected to
a suitable voltage source. We want to determine the charge distributi
on the cylinder, using an expansion involving homogenous standa
responses�Ln, that is to say a standard responses�Ln for a charge
distribution independent ofz.

In order to achieve this, we start by establishing the electrostatic fie
distributions produced by these standard responses. Let us first co
sider the field electric field produced on the cylinder boundary by an
homogenous (i.e., independent ofz) distribution of charges. This field
is normal to the surface and its real amplitudeEL(�) can be expanded
as a angular Fourier series

EL(�) = Re
1

n=0

ELne
in� : (19)

Using the well-known amplitude�S="0 of the field on the boundary
of a conducting cylinder carrying a surface charge density�S and [1,
eqs. 4, 5], we obtain that the complex amplitude of the electric field
produced by the homogenous standard responses�Ln are given by

ELn =
�Ln

2�"0r0
: (20)

Let us now consider the complex potential�0 produced by a cylin-
drical monopole alone in space placed on the cylinder axis. Taking
point on the cylinder axis as origin and choosing theOx axis vertical,
directed upward, we obtain (see [6, p. 195]) the potential as a functio
of the cartesian coordinatesx andy

�0 = �
p0
2�"0

ln(x+ iy) (21)

wherep0 is the momentum of the cylindrical dipole of order 0, that is
to say the per-unit-length charge density. The electric field produce
is the opposite of the conjugate of the derivative of the potential an
therefore

Ex + iEy =
p0
2�"0

1

x� iy
=

p0
2�"0

ei�

r
: (22)
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Comparing this expression with (20) we of course find that the cy
drical dipole of order 0 produces the same field as an homogenous
dard response of type�L0 with an amplitude�L0 = p0, because in both
cases we have the same field on the boundaryr = r0.

Forn � 1, let us consider the complex potential� 0

n produced by a
cylindrical multipole of ordern, alone in space at the location of th
cylinder axis. We now obtain (see [6, p. 203])

� 0

n =
pn
2�"0

1

(x+ iy)n
(23)

wherepn is the moment of the cylindrical multipole of ordern. The
resulting field produced is simply

Ex + iEy =
pn
2�"0

n

(x� iy)n+1
=

pn
2�"0

nei(n+1)�

rn+1
: (24)

Let us also consider the complex potential� 00

n derived from (24)
using an analytic inversion (see [7, pp. 220, 250]). We obtain

� 00

n =
pn
2�"0

(x+ iy)n

r2n0
: (25)

The field produced by this complex potential is

Ex + iEy =
�pn
2�"0

n(x� iy)n�1

r2n0
=
�pn
2�"0

nrn�1e�i(n�1)�

r2n0
: (26)

If we now define the complex potential�n as�n = � 0n � � 00n , the
resulting field at a distancer0 of the cylinder axis is given by

Ex+iEy =
pn
2�"0

nei�

rn+10

ein� + e�in� =
pn
�"0

nei�

rn+10

cosn�: (27)

Comparing this result with (20), we find that forn � 1, the complex
potential�n produces the same field as the one which exist when
homogenous standard response of type�Ln with an amplitude

�Ln =
2npn
rn0

(28)

exist on the conducting cylinder, because in both cases we have
same field on the boundaryr = r0.

We must now give an interpretation to the two components
the complex potential�n: the complex potential� 0n corresponds to
the field produced by the charge distribution of the homogen
standard response�Ln, whereas the complex potential� 00n corresponds
to an external field capable of inducing this charge distribution
the cylinder. Therefore any homogenous charge distribution on
conducting cylinder alone in space, specified using the amplitude
the standard responses�Ln produces a complex potential equal to

� = �
�L0
2�"0

ln(x+ iy) +
1

4�"0

1

n=1

�Ln
n

rn0
(x+ iy)n

: (29)

As a second step, we can now establish the complex potential o
conducting circular cylinder above the ground plane. We must cons
a complex potential given in (29), its image complex potential (it wou
be the opposite of the potential at the opposite of the conjugate p
if the origin was on the ground plane) and the complex potential o
homogenous normal field of amplitudeE0 and we therefore obtain

� =�
�L0
2�"0

ln
(x+ iy)

�x� iy � 2h

+
1

4�"0

1

n=1

�Ln
1

n

rn0
(x+ iy)n

�
rn0

(�x� iy � 2h)n

� (x+ iy + h)E0: (30)
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Fig. 3. The dimensionless coefficients� , � , � and�
as a function of the normalized heighth=r above a ground plane.

Considering the symmetry of the problem, the amplitudes of the
standard responses�Ln must be real. At any point on the ground
plane, we havex = �h and we can see that, the real part of the
complex potential (the real potential) vanishes. The real part of the
complex potential must take on a constant value on the boundar
of the conducting cylinder. Because of the logarithm, this is only
achievable exactly with an infinite number of terms in the series
whenever the cylinder is globally charged. If we limit ourselves to
an approximate solution withM + 1 terms, (30) is ideal for the
computation of the standard responses using the method of momen
with point matching. The system to be solved is

�L0 ln 1 +
4h2

r20
+

4h

r0
cos �

+

1

n=1

�Ln
n

Re e�in� �
(�1)n

2h
r

+ ei�
n

=4�"0E0r0 cos � +
h

r0
+ 4�"0V (31)

whereV is the real potential of the conducting cylinder with respect
to the ground plane, forM + 1 values�m of the azimuth angle� (the
origin of � is the vertical axisOx pointing upward), for instance�m =
2m�=(2M + 1), for m between 0 andM . We have to consider that
the general solution is a superposition the solution forV = 0 and of
the solution forE0 = 0.

ForV = 0 we have computed (see Fig. 3) the dimensionless

�LnZV =
�Ln

4�"0r0E0
(32)

and forE0 = 0, we have computed (see Fig. 4) the dimensionless

�LnZF =
�Lnh

4�"0r0V
(33)

both as functions ofh=r0 ranging between 1 and 10 and forn = 0 to
n = 3. Using the universal plots of Figs. 3 and 4 with the proper value
of the normalized heighth=r0, any value of�L0, �L1, �L2, and�L3 can
be computed if one adds the value of�Ln given by (32), corresponding
to the effect ofE0, to the value of�Ln given by (33), corresponding to
the effect ofV=h. As expected, we can see that there is little difference
between the charge distributions forV = 0 andE0 = 0 for high values
of h=r0. One should note that one cannot compute�LnZF efficiently
this way due to a poor convergence whenh=r0 approaches 1. This
is because the capacitance between the cylinder and the ground pla
(proportional to�L0ZF ) becomes large and the charge concentrates
at � = ��. However, there is a well-known analytic formula for the
capacitance between two cylinders (see [7, p. 192]) from which�L0ZF
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Fig. 4. Dimensionless coefficients� , � , � , and� as a
function of the normalized heighth=r above a ground plane.

can be computed for any value ofh=r0. Such a problem does not occu
with �LnZV and forh=r0 = 1 we obtained

2�L0ZV = 1:00 000

2�L1ZV = 1:28 987

2�L2ZV = 0:22849

2�L3ZV = � 0:06 114

2�L4ZV = 0:00956

2�L5ZV = 0:00278

2�L6ZV = � 0:00364

2�L7ZV = 0:00219

and forn �8 j2�LnZV j � 0:001: (34)

This values have been computed forM = 20 and forM = 40,
with the same results for the number of digits shown. We had a
years ago implemented in [2, Appendix I] an expansion with only t
terms for an approximate derivation of�Ln in the caseh=r0 = 1.
A “physical” derivation based on the superposition theorem and
image theorem had led us to the approximate values2�L0ZV = 1 and
2�L1ZV = 1 without numerical computation. In order to obtain th
approximate result, one may use [2, eq. 22] noting that the origin
the azimuth angle is a downward pointing axis, with [1, eq. 4] and t
(32). This earlier simple derivation was after all not too bad!

Finally, we can now leave the electrostatic field computation a
translate our results to the case of an ideally metallized circular cy
drical generalized screen of electrically small cross section. We w
to know the natural amplitudes of the high impedance standard ex
tions when the axis runs parallel to a ground plane.

For n = 0, the natural amplitude can be computed using (2), (
and (33), using a suitable combination of�L0ZV and�L0ZF , as

�L0 = 4�"0r0 E0�L0ZV +
V

h
�L0ZF : (35)

The value ofV can be computed from the relation between the curr
injected on the cable (related to�L0ZV ), the capacitance to ground (re
lated to�L0ZF ) and the impedances to which the section of generali
screen is connected at each end.

Forn � 1,V being now a known quantity, the natural amplitude d
fined by (10) can be computed from a suitable combination of�LnZV
and�LnZF as

Eappl
r

rn�1
=

2

rn�10

E0�LnZV +
V

h
�LnZF (36)

where (32) and (33) have been used.
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VIII. B ASIC IMPLEMENTATION OF THE

FIVE MAIN TYPES OFCOUPLING

We will now establish the expression of the field equivalent source
for two highly interesting situations of field-to-cable coupling in the
case of a cable installed above an ideal ground plane: the longitudin
excitation and the transverse excitation for a cable laying on the grou
plane. In the case of the longitudinal excitation, a TEM wave propa
gates along the cable axis. In the case of the transverse excitation
TEM propagates parallel to the ground plane, orthogonally to the cab
axis. The amplitude of the applied field isE0.

We will consider that the generalized screen of the cable of extern
radiusr0 is in electrical contact with the ground plane, which implies
thatV = 0 and we will consider only the five main types of coupling.
According to (15), (17), (34), (35), and (36), the amplitude of the field
equivalent current source for the conductor� will be

di� = (2jjj!�"0r0�R� + 1; 29YPT�)E0dz (37)

both, in the case of the longitudinal excitation, and transvers
excitation.

In the case of the longitudinal excitation, we know that the distri
bution of charges and current are the same except for a multiplicati
constant (see [8, p. 248]) because we are in the case of a TEM wa
propagating in an ideal waveguide (the cable shield being in conta
with the ground plane, they are viewed as a single conductor by t
TEM wave). We can therefore replaceE by H and�L0 by iV A0 and
"0 by 1 in (35) and (36) withV = 0. Using (14) and (18), we get the
amplitude of the field equivalent voltage source for the conductor� as

dv� = (2�r0ZT� + 1; 29ZPT�)
E0

�0
dz: (38)

In the case of the transverse excitation, the applied axial field can
used directly in (16) and the value of the field equivalent voltage sourc
for the conductor� is therefore

dv� = ZAT�
E0

�0
dz: (39)

These results can for instance be applied to the case of an electrica
short cable for which propagation effects can be disregarded as well
the crosstalk between internal cables. Let us consider that the inter
conductor�, is terminated at the near-end with a linear load connecte
to ground of impedanceZ1� and at the far-end with a linear load con-
nected to ground of impedanceZ2�. We obtain the following values
for the near-end induced voltagev1� and the far-end induced voltage
v2� in the case of the longitudinal excitation:

v1�
`E0

=
Z1�

�0 (Z1� + Z2�)
f1; 29 hZPT�i+ 2�r0ZT�g

+
Z1�Z2�

(Z1� + Z2�)
f1; 29 hYPT�i+ 2jjj!"0�r0�R�g

(40)

and
v2�
`E0

=
�Z2�

�0 (Z1� + Z2�)
f1; 29 hZPT�i+ 2�r0ZT�g

+
Z1�Z2�

(Z1� + Z2�)
f1; 29 hYPT�i+ 2jjj!"0�r0�R�g

(41)

where` is the length of cable submitted to the field, wherehZPT�i is
the average ofZPT� in the direction of the magnetic field, and where
hYPT�i is the average ofYPT� in the direction of the electric field.
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Efficient Models for Base Station Antennas
for Human Exposure Assessment

Zwi Altman, Brigitte Begasse, Christian Dale, Andrzej Karwowski,
Joe Wiart, Man-Fai Wong, and Laroussi Gattoufi

Abstract—Two simple and accurate models for base-station (BS) panel
antennas are proposed for human-exposure assessment. Panel antennas
comprise an antenna array with low coupling between its unit cells. The
proposed model is based on the superposition of shifted radiating field con-
tributions in amplitude and phase of a unit cell of the panel antenna. In the
first model, the electric field is obtained via a full wave analysis of the an-
tenna unit cell. In the second model, a far-field approximation of the unit
cell is utilized, and is valid at about two wavelengths away from the an-
tenna. It is shown that the second model can be used as an interactive tool
for the verification of compliance to exposure limits of BS panel antennas
as required by standards.

Index Terms—Base-station panel antennas, exposure assessment, mobile
communication, unit cell.

I. INTRODUCTION

The tremendous interest of the public in mobile communication
systems, manifests itself in the densification of the mobile network
and the introduction of new systems such as Edge and universal
mobile telecommunication system (UMTS). To ensure user safety,
international recommendations such as International Commission on
Nonionizing Radiation Protection (ICNIRP) Guidelines have been
elaborated to define the authorized limits of exposure for electro-
magnetic fields [1].
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In the case of the transverse excitation, we get

v1�

`E0

=
Z1�

�0 (Z1� + Z2�)
ZAT

+
Z1�Z2�

(Z1� + Z2�)
f1; 29 hYPT�i+ 2jjj!"0�r0�R�g

(42)

and

v2�

`E0

=
�Z2�

�0 (Z1� + Z2�)
ZAT

+
Z1�Z2�

(Z1� + Z2�)
f1; 29 hYPT�i+ 2jjj!"0�r0�R�g :

(43)

We note that even though (40)–(43) use quaternions, all terms
be considered as complex numbers, because the azimuth angle� de-
pendency has been suppressed by the averaging. Measurement r
for these voltages, as obtained in a Crawford cell [2] and in a GTE
cell [3] have already been published. The approximate formula for
near-end and far-end voltages in these papers should be replaced
(40)–(43), but their contents remains otherwise valid.

IX. CONCLUSION

In this paper we have built on basic concepts like the canonical
composition of the tangential response on a generalized shield and
definition of standard excitations, already introduced in [1], in order
present:

• idea of replacing the exact boundary of the screen with the c
cular cylindrical boundary of a generalized screen;

• definition of natural amplitudes;
• method for the implementation of these tools for the characte

zation of cylindrical shells and shielded cable.
This approach of characterization is not perfect and does not so

all problems. When we arbitrarily consider a generalized screen w
an outer shape differing a lot from the conducting screen, we mig
increasingly:

• fail to be able to solve rigorously problems with field source
outside the conducting screen, but falling inside the generaliz
screen;

• and have to rely more heavily on the speculative aspects of
conjecture of Section II to solve some problems.

We have given new definitions for the five main types of couplin
of a shielded cable. These definitions are essentially different from
earlier version: they are not intuitive definitions believed to give an a
curate picture of the coupling for a circular cylindrical shield, but th
consequence of general basic concepts applicable to both cylindr
shells and shielded cables. We can now see how the five main type
coupling are the first terms of an expansion and understand the un
lying assumptions. If case of need, the consequences of limiting on
analysis to the five main types of coupling can now be understood a
overcome.

In addition, this paper also contains the computation of the natu
amplitudes of the electrical standard excitation for a circular cylindric
generalized screen of electrically small cross section and, for cab
the accurate computation of induced voltages and currents.
0018-9375/02$17.
an
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