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Modal Transmission Schemes
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Abstract— We investigate modal transmission schemes used to
reduce echo and internal crosstalk in a multichannel link using an
untransposed multiconductor interconnection. The core of such
a modal transmission scheme is an appropriate multiconductor
transmission line (MTL) model of the interconnection. The
standard theory of modal signaling, which emphasizes modal
voltages, modal currents, and associated eigenvectors is sum-
marized. Then, we present new results of MTL theory: three
theorems on generalized associated eigenvectors and two high-
frequency approximations. These results are needed to explain
an assumption used in some modal transmission schemes.

Index Terms— Crosstalk, interconnection, multiple-input and
multiple-output (MIMO) systems, signal integrity, transmission.

The link considered in this paper comprises a multiconduc-
tor interconnection, that is, a physical device having n ≥ 2
transmission conductors (TCs) and a reference conductor or
ground conductor (GC). We need to distinguish between
crosstalk and TC-to-TC coupling. TC-to-TC coupling collec-
tively designates mutual capacitance between the TCs and
mutual impedance between loops each comprising one of
the TCs and the GC. In a multichannel single-ended link
where a single TC is allocated to each channel, TC-to-
TC coupling causes internal crosstalk, so that increasing the
distances between the TCs to reduce TC-to-TC coupling is
I. INTRODUCTION

IN A LINEAR multichannel electrical link used for signal
transmission, such as the link shown in Fig. 1, we can

consider two endogenous transmission impairments: echo, the
detrimental phenomenon by which a signal sent or received
at an end of the link, in one of the channels, is followed by
the reception of a delayed noise on the same channel, at the
same end of the link; and internal crosstalk, the detrimental
phenomenon by which a signal sent in one of the channels
produces noise in another channel. Detrimental interactions
may also exist between the link and other circuits of the device
in which it is built; the resulting crosstalk between one or more
channels of the link and such other circuits is referred to as
external crosstalk.

In modal transmission, each channel is allocated to a
propagation mode of a multiconductor interconnection [1].
A single channel differential link uses the differential mode
of a balanced pair for signal transmission: this is the simplest
example of modal signaling. In the ideal telephone system of
the beginning of the 20th century, where the interconnection
comprises multiple balanced pairs, transposition (i.e., frequent
permutations of the conductors) is used to obtain that, at voice
frequency, a differential mode in one of the balanced pairs
approximately corresponds to a propagation mode [2], [3].
This paper is about the theoretical foundation of modal
signaling schemes intended to reduce internal crosstalk in a
multichannel link using an untransposed interconnection.
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one of the standard crosstalk reduction techniques. In a single-
channel differential link where two TCs form a balanced pair,
TC-to-TC coupling does not cause internal crosstalk and is
advantageous in several respects. However, in a multichan-
nel differential link using a planar arrangement of untrans-
posed pairs, TC-to-TC coupling between the TCs of different
pairs will cause internal crosstalk. Thus, a sufficient spacing
between the pairs is necessary. As a consequence, in a link
built in a single layer of the substrate of a multichip module
(MCM) or printed circuit board providing m ≥ 2 channels
for high-speed digital transmission, m−1 wide spacings are
needed to obtain a sufficiently low internal crosstalk, in the
cases of single-ended signaling and of differential signaling
[4, Sec. 7.2].

In the case of a modal signaling scheme using a uniform
interconnection, such as the ZXtalk method, TC-to-TC cou-
pling is not a cause of crosstalk [1], [5]–[7]. Thus, modal sig-
naling can be used to build multichannel links having a narrow
spacing between the TCs and a reduced number of conductors
and leads compared to multichannel differential links.

The core of any modal signaling scheme is a suit-
able multiconductor transmission line (MTL) model for the
interconnection, and the definition of the modes used for
signaling. The theory used in the initial definition of the
ZXtalk method emphasized the concept of total decoupling
and the role of associated eigenvectors, because only modes
providing total decoupling have the desired property of inde-
pendent propagation, and associated eigenvectors were shown
to provide total decoupling. This theory is summarized in
Section II. A concept of generalized associated eigenvectors
and three theorems about them are proven in Section III,
where the second and third theorems are new. These results
are important for modal signaling schemes because they tell us
how we can build all sets of mode providing total decoupling.
They also reveal the properties of two possible choices of gen-
eralized associated eigenvectors. Sections IV and V are new
developments in which we explore approximations applicable
0 © 2013 IEEE
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Fig. 1. Point-to-point link providing m channels, consisting of an intercon-
nection, NIT, and FIT. The interconnection has n TCs and a GC.

to low and to high frequencies and compare high-frequency
approximations. This analysis of approximations is necessary
to justify a property, which was previously stated and used,
but never proven: it is usually possible to consider that, when
computing the characteristic impedance matrix and a transition
matrix from modal electrical variables to natural electrical
variables, the losses are negligible in some frequency band
[1, Sec. VII], [6, Sec. IV]. This approximation is not needed
for circuit simulation, but it is essential for the design of links
implementing a modal signaling scheme at high frequency,
because it reduces the complexity of the near-end interface
and termination device (NIT) and of the far-end interface and
termination device (FIT).

II. DEFINITIONS AND BASIC PROPERTIES

In this section, we mainly summarize [8, Secs. 4–7],
and we use the same notations. We consider the link shown
in Fig. 1, providing m channels and comprising: an intercon-
nection having n TCs and a GC, where n ≥ m, a NIT and a
FIT. The GC is used as a reference for voltage measurements.
We number the TCs from 1 to n, and we define:

1) the curvilinear abscissa z, the interconnection extending
from z = 0 to z = L;

2) the natural current i j as the current flowing on the TC j ,
toward z = L;

3) the natural voltage v j as the voltage between the TC j
and the GC;

4) the column vector i of the natural currents i1, . . . , in ,
which depends on z;

5) the column vector v of the natural voltages v1, . . . , vn ,
which depends on z.

We shall only consider frequency domain quantities. We
assume that the interconnection can be modeled as a MTL. The
(n + 1)-conductor MTL model uses a per-unit-length (p.u.l.)
impedance matrix Z′ and a p.u.l. admittance matrix Y′, which
are used in the telegrapher’s equations{

dv
dz = −Z′i
d i
dz = −Y′v.

(1)

Z′ and Y′ are frequency-dependent symmetric matrices of
size n × n. Z′ and Y′ each must represent a passive linear sys-
tem. Thus, their real part is positive semidefinite [9, Sec. 7.1].
We shall assume that Z′ and Y′ are invertible. The MTL is
lossless if and only if Z′ = jωL′ and Y′ = jωC′ where L′
and C′ are real matrices of size n × n. In this case, L′ and C′
must be frequency independent. In this paper, uniform means
independent of z. The MTL is said to be uniform if Z′ and
Y′ are uniform.

Assuming a uniform MTL, we can derive two second order
differential equations{

d2v
dz2 − Z′Y′v = 0
d2i
dz2 − Y′Z′i = 0.

(2)

Z′Y′ and Y′Z′ are similar [9, Sec. 1.3.20]. We shall assume
that Z′Y′, or equivalently Y′Z′, is diagonalizable. In this case,
there exist two invertible matrices T and S such that{

T−1Y′Z′T = �2

S−1Z′Y′S = �2
(3)

where
� = diagn(γ1, . . . , γn) (4)

is the diagonal matrix of order n of the propagation constants
γ i , chosen with an argument lying in ]−π /2, π /2], so that the
γ i are principal square roots. T and S define a modal transform
for the natural currents and for the natural voltages, respec-
tively. We can also say that T and S are transition matrices
from modal electrical variables to natural electrical variables.
The column vectors of S (respectively, of T) are defined
as linearly independent eigenvectors of Z′Y′ (respectively, of
Y′Z′). Consequently, S and T are not uniquely defined by (3).
We write {

v= SvM

i = TiM
(5)

where we use iM to denote the vector of the n modal currents
iM1, . . . , iMn; we use vM to denote the vector of the n modal
voltages vM1, . . . , vMn ; we call S the transition matrix from
modal voltages to natural voltages; and we call T the transition
matrix from modal currents to natural currents. The eigen-
voltages (the columns of S) need not be orthogonal and the
eigen-currents (the columns of T) need not be orthogonal
[1, Sec. VI], [8, Sec. 7].

Using (3) and (5), we find that (2) is equivalent to⎧⎨
⎩

d2vM
dz2 − �2vM = 0

d2iM
dz2 − �2iM = 0

(6)

where each vector equation contains n decoupled scalar equa-
tions. For a function f (u) of the variable u ∈ C and a diagonal
matrix diagn(a1, . . . , an), we define f (diagn(a1, . . . , an)) =
diagn( f (a1), . . . , f (an)). Using this definition, the general
solution of (6) is {

vM = vM+ + vM−
iM = iM+ + vM−

(7)

where {
vM+ = e−z�vM0+
iM+ = e−z�iM0+

and

{
vM− = ez�vM0−
iM− = ez�iM0−

(8)
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where vM0+, vM0−, iM0+, and iM0− are z-independent vectors
depending on the boundary conditions at z = 0 and z = L.
We find that vM+ is the column vector of the modal voltages
traveling toward the far end, iM+ is the column vector of the
modal currents traveling toward the far end, vM− is the column
vector of the modal voltages traveling toward the near end,
and iM− is the column vector of the modal currents traveling
toward the near end. Thus, for any α ∈ {1, . . . , n}, a modal
current iMα and a modal voltage vMα may propagate with
the propagation constant γα toward the far end, or with the
opposite propagation constant −γα toward the near end.

Using (5) in (6) and (7), we find that the general solution
of (2) is {

v= v+ + v−
i = i+ + v−

(9)

where{
v+ = Se−z�vM0+
i+ = Te−z�iM0+

and

{
v− = Sez�vM0−
i− = Tez�iM0−.

(10)

Though (2) and (6) are direct consequences of (1), they
are not equivalent to (1) because they do not contain the
relationships between i and v in (1). It is possible to write
these relationships using the modal characteristic impedance
matrix ZMC or the characteristic impedance matrix ZC . In
order to define these quantities, we need to show that

�−1S−1Z′T = �S−1Y′−1T

= S−1Y′−1T� = S−1Z′T�−1. (11)

A simple but incorrect proof of (11) assumes that there exist
solutions of (1) in the form v = v+ and i = i+ where i+ is
arbitrary. The following proof seems new and does not use
this assumption.

Proof: We have Y′ Z′ = Z′−1Z′ Y′ Z′. By (3), we
find T �2 T−1 = Z′−1 S �2 S−1 Z′. This invertible and
diagonalizable matrix has a unique principal matrix square
root, defined in the Appendix as its image under the primary
matrix function associated with the complex-valued principal
square root. This principal matrix square root is independent
of the diagonalization used to compute it, so that we have
T � T−1 = Z′−1 S � S−1 Z′. This can be written �−1

S−1Z′ T � T−1 = S−1Z′, so that we obtain �−1 S−1Z′
T = S−1Z′ T �−1. This is one of the equalities of (11).
Using (3) one more time, we obtain �−1 S−1 Z′ = �
S−1Y′−1 and Z′ T �−1 = Y′−1 T �, which allow us to
obtain (11).

The modal characteristic impedance matrix ZMC is
given by

ZMC = �−1S−1Z′T = �S−1Y′−1T

= S−1Y′−1T� = S−1Z′T�−1. (12)

ZMC depends on the choice of S and T. By (11), S−1 Y′−1T
commutes with �. Thus, by [10, Sec. 6.2.9], it commutes with
e−z� and ez�. Thus, ZMC commutes with �, e−z�, and ez�.
It can easily be shown that{

vM+ = ZMC iM+
vM− = −ZMC iM−.

(13)
The characteristic impedance matrix ZC is given by

ZC = SZMC T−1 = S�−1S−1Z′ = S�S−1Y′−1

= Y′−1T�T−1 = Z′T�−1T−1. (14)

We observe that S � S−1 is the image of S �2 S−1 under
the principal matrix square root defined in the Appendix. This
principal matrix square root is unique and independent of the
choice of S used to compute it. For the same reason, S �−1

S−1, T � T−1, or T �−1 T−1 are independent of the choice
of S and T. Thus, ZC is unique and does not depend on the
choice of S and T. Using (10) and (13), we obtain{

v+ = ZC i+
v− = −ZC i−.

(15)

A matched termination has an impedance matrix equal to
ZC and it produces no reflection [6, Sec. II], [7], [8, Sec. 9].

If a diagonalization of the matrix Y′Z′ produces a matrix
T satisfying the first line of (3), we find that two possible
solutions of the second line of (3) are

S = t T−1 (16)

where t A is used to denote the transpose of a matrix A, and

S = jωcK Y′−1T (17)

where cK is an arbitrary scalar different from zero, which may
depend on frequency, and which has the dimensions of p.u.l.
capacitance [11, eq. (19c)], [12], [13], [14, Appendix]. When
S and T are defined by (3) and (16), we say that they are
biorthonormal, and that the eigenvectors contained in S and T
(i.e., their column vectors) are biorthonormal. When S and T
are defined by (3) and (17), we say that they are associated, and
that the eigenvectors contained in S and T are associated [1],
[6]. For associated eigenvectors, ZMC is diagonal and given
by

ZMC = 1

jωcK
�. (18)

Thus, for associated eigenvectors, for a wave propagating
in a given direction and for any α ∈{1,. . . , n}, by (13) and
(18) we have [1], [6]

vMα = εD

jωcK
γαiMα (19)

where εD is equal to 1 if the wave propagates toward the far
end, or to −1 if the wave propagates toward the near end.

From (2) to here, we have only assumed that we use a
uniform MTL, that Z′ and Y′ are invertible, and that Z′ Y′, or
equivalently Y′ Z′ is diagonalizable. For a lossless MTL, we
can compute a frequency-independent and real (FIR) matrix
T satisfying [15, Sec. 4.4.3]

T−1 = ε0
t TC′−1 (20)

where ε0 is the permittivity of vacuum, and we have

γα = jω

cα
(21)

where the positive real cα is the propagation velocity of the
mode α. In (20), ε0 is used to obtain a dimensionless T.
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If, looking for associated eigenvectors, we apply (17) with
cK = ε0 to this T, we obtain a FIR matrix S, and we can easily
show that it satisfies (16). Thus, the eigenvectors contained
in S and T are biorthonormal and associated eigenvectors
in this case. These eigenvectors can be used to obtain, for
the MTL, an equivalent circuit comprising ideal multiwinding
transformers and n uncoupled lossless two-conductor TLs
[12].

Based on the fact that we can use a FIR matrix T or S, we
find that ZC is FIR for the lossless MTL.

III. GENERALIZED ASSOCIATED EIGENVECTORS

A more general possible choice, referred to as generalized
associated eigenvectors, is given by

S = jωY′−1TcK (22)

where cK is an arbitrary invertible diagonal matrix, possibly
frequency-dependent, having the dimensions of p.u.l. capac-
itance. For generalized associated eigenvectors, ZMC is a
diagonal matrix given by

ZMC = 1

jω
c−1

K �. (23)

For generalized associated eigenvectors, using (13) and (23),
we obtain a result similar to (19)

vMα = εD

jωcKαα
γαiMα (24)

where cKαβ denotes an entry of cK .
We say that a total decoupling occurs when a particular

choice of T and S leads to a diagonal ZMC . In this case,
an equivalent circuit comprising voltage-controlled voltage
sources, current-controlled current sources, and n uncoupled
TLs may be defined for the (n + 1)-conductor MTL, the
αth TL having a propagation constant γ α and a character-
istic impedance equal to the αth diagonal entry of ZMC .
We note that this equivalent circuit is different from the
abovementioned equivalent circuit using ideal multiwinding
transformers, which only applies to lossless MTLs.

We can establish the following result [8, Sec. 7].
Theorem 1: Total decoupling occurs if and only if general-

ized associated eigenvectors are used.
Proof: By (23), generalized associated eigenvectors pro-

vide total decoupling.
Conversely, if total decoupling is achieved, � Z−1

MC is diago-
nal. By (12) we have S = Y′−1T � Z−1

MC , which complies with
the definition of generalized eigenvectors (22) for jω cK =
� Z−1

MC .
The diagonalization of Y′Z′ and Z′Y′ in (3) provides a

decoupling of (6), leading to (8), but it need not provide total
decoupling. For instance, the biorthonormal eigenvectors used
by many authors, which satisfy (16) in the place of (17) or
(22), are such that total decoupling need not be present, so
that it need not lead us to said equivalent circuit [8, Sec. 7].

For most applications of modal vectors, any total decoupling
is satisfactory, so that any choice of the invertible diago-
nal matrix cK is acceptable. However, we might want to
use biorthonormal eigenvectors providing a total decoupling.
Is this possible? The next theorem is new and answers this
question.

Theorem 2: If Z′Y′, or equivalently Y′Z′, is diagonalizable,
there exist S and T satisfying (3) such that the eigenvectors
contained in S and T are biorthonormal and generalized
associated eigenvectors.

Proof: Since Z′ is symmetric and invertible, Z′−1

is symmetric and invertible. Since Z′Y′ is diagonalizable
and Y′ is symmetric, we can use the Case II(b) of the
[9, Th. 4.5.15] to conclude that there exists a nonsingular
matrix M such that t M Z′−1 M and t M Y′ M are diagonal.
Thus, M−1 Z′ Y′ M is diagonal so that we can use S = M.
Also, t S Y′ S being diagonal, we can define a diagonal matrix
cK by jω cK = t S Y′ S. At this stage, we have found an
invertible matrix S satisfying the second line of (3) and an
invertible matrix cK such that

S = jωY′−1 t S−1cK . (25)

Let us use (16) to define T. We see that (22) is
satisfied.

This theorem extends to lossy MTLs the possibility, estab-
lished at the end of Section II for a lossless MTL, of obtain-
ing biorthonormal and generalized associated eigenvectors.
In the [9, Th. 4.5.15], we observe that the proof of the
existence of the nonsingular matrix M is constructive, and uses
Takagi’s factorization, which is a special case of the singular
value decomposition for symmetric matrices. However, the
algorithm used to obtain M is involved. Since we always
want to use generalized associated eigenvectors (to obtain
total decoupling) and there is no clear advantage attached to
biorthonormal eigenvectors, we do not compute M to solve an
actual problem.

We now disclose another new choice of generalized eigen-
vectors, which is at the same time simple to compute and very
useful.

Theorem 3: For any matrix T satisfying the first line of
(3), a possible choice of generalized associated eigenvectors
is given by

S = 1

zK
ZC T (26)

where zK is an arbitrary scalar different from zero, which
may depend on frequency, and which has the dimensions of
impedance.

Proof: Using (14), we get (1/zK ) ZCT = jω Y′−1 T cK

for jω cK = �/zK . Thus, (22) is satisfied if we use (26).
The generalized associated eigenvectors given by (26) have

several advantages. The first is that they have a clear physical
significance: if we inject a single modal current at the near
end of the interconnection whose far end is connected to an
(n + 1)-terminal device presenting an impedance matrix equal
to ZC , we obtain a single modal voltage. A second advantage
occurs if we decide that zK is FIR. In this case, if ZC and S
are FIR, then T is FIR. This property will be used in the next
section.

IV. LOW- AND HIGH-FREQUENCY APPROXIMATIONS

In this section, we want to rigorously derive low- and
high-frequency approximations for ZC and high-frequency
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approximations for S and T. The difficulty is that small
perturbations in a matrix can produce radical changes in its
eigenvectors. Thus, much cannot be said about the effect of
perturbations in Z′ and Y′ on S and T, and (14) cannot be
used to directly assess the effect of perturbations in Z′ and Y′
on ZC .

Using the principal matrix square root defined in the
Appendix and (3), we can write

√
Z′Y′ = S�S−1 and

√
Y′Z′ = T�T−1 (27)

so that by (14), we have

ZC = √
Z′Y′ −1

Z′ = √
Z′Y′Y−1

= Y′−1√Y′Z′ = Z′√Y′Z′ −1
. (28)

Using the matrix exponential of a principal matrix square
root introduced in the Appendix, a scattering matrix, denoted
by S(z) and defined by [8, Sec. 8](

v−(0)
v+(z)

)
= S(z)

(
v+(0)
v−(z).

)
(29)

is given by

S(z) =
(

0 e−z
√

Z′Y′

e−z
√

Z′Y′
0

)
. (30)

A length z of the MTL is completely characterized by ZC

and S(z), so that it is also completely characterized by z, ZC

and by
G = √

Z′Y′ (31)

which will be referred to as the lineic propagation matrix
because, according to [10, eq. (6.2.36)] it is the opposite of
the derivative of the nondiagonal entries of S(z) with respect
to z at z = 0 (lineic is a synonym of p.u.l., used in the
Electromagnetism chapter of the International Electrotechnical
Vocabulary [16]).

The theorem on the continuity of f (A) stated in the
Appendix, (28) and (31) allow us to say that a small per-
turbation in Z′ and/or Y′ will produce a small change in ZC

and a small change in G. At low frequencies where Z′ is
approximately equal to the dc p.u.l. resistance matrix Z′

DC, and
Y′ is approximately equal to jω times a dc p.u.l. capacitance
matrix C′

DC, ZC is approximately given by

ZC ≈ √
jωR′

DCC′
DC

−1R′
DC (32)

so that

ZC ≈ 1 − j√
2ω

AC (33)

where AC is a FIR matrix.
At high frequencies, we have Z′ = jωL′

O + 	Z′ and Y′ =
jωC′

O + 	Y′ where L′
O and C′

O are frequency independent
positive definite real matrices such that |||ωL′

O |||∞ >>
|||	Z′|||∞ and |||ωC′

O |||∞ >> |||	Y′|||∞, where the max-
imum (absolute) row sum norm |||A|||∞ of a matrix A is a
matrix norm defined by [9, Sec. 5.6.5]

|||A|||∞ = max
i

n∑
j=1

∣∣[A]i j
∣∣. (34)
It is possible to define L′
O as being equal to the

high-frequency p.u.l. external inductance matrix. The high-
frequency p.u.l. internal impedance matrix of the interconnec-
tion being proportional to the square root of frequency for a
normal skin effect [17], we find that |||	Z′|||∞ = o(ω) as
ω → ∞. It is possible to define C′

O such that ωC′
O is equal

to the imaginary part of Y′ at one of the high frequencies of
interest. Since the loss tangent of the dielectrics used in the
interconnection must be low at these frequencies (typically
below 0.03), the condition |||ωC′

O |||∞ >> |||	Y′|||∞ is
indeed satisfied.

Thus, removing the second order terms, we get{
Z′Y′ ≈ −ω2L′

O C′
O + jω

(
L′

O	Y′ + 	Z′C′
O
)

Y′Z′ ≈ −ω2C′
OL′

O + jω
(
	Y′L′

O + C′
O	Z′). (35)

We can use diagonalizations of C′
OL′

O and L′
O C′

O such that

T−1
0 C′

O L′
O T0 = S−1

0 L′
O C′

OS0

=
(

�0

jω

)2

=
(

diagn(γ01, . . . , γ0n)

jω

)2

(36)

where T0 and S0 are FIR [13], [15, Sec. 5.2], T0 and S0
containing associated eigenvectors. Using (36) in (35), we get{

Z′Y′ ≈ S0{�2
0 + jωS−1

0 (L′
O	Y′ + 	Z′C′

O )S0}S−1
0

Y′Z′ ≈ T0{�2
0 + jωT−1

0 (	Y′L′
O + C′

O	Z′)T0}T−1
0 .

(37)
For ζ ∈ [0, 1], let us define the function

A(ζ ) = − (1 − ζ ) ω2L′
O C′

O + ζ Z′Y′

≈ −ω2L′
O C′

O + ζ jω(L′
O	Y′ + 	Z′C′

O). (38)

If we apply [10, eq. (6.6.28)] to this function, we obtain

d
√

A
dζ

∣∣∣∣
ζ=0

	 S0

{
	 f ◦ S0

−1 dA
dζ

∣∣∣∣
ζ=0

S0

}
S−1

0 (39)

where ◦ is the Hadamard product and 	 f is the matrix of size
n × n defined by

[	 f ]αβ = γ0α − γ0β

γ 2
0α − γ 2

0β

= 1

γ0α + γ0β
, for γ0α �= γ0β

[	 f ]αβ = 1

2γ0α
, for γ0α = γ0β. (40)

By (31) and (38), we have

G = √
A(1) ≈ √

A(0) + d
√

A
dζ

∣∣∣∣
ζ=0

. (41)

Using (38), (39), and (41), we find that G is approximately
given by

G 	 jω
√

L′
OC′

O

+ jωS0
{
	 f ◦ S−1

0 (L′
O	Y′ + 	Z′C′

O )S0
}
S−1

0 . (42)

By (28) and (31), we have ZC = G Y′−1. Using [9, Sec.
5.6.16] and dropping the second order term, we obtain

ZC ≈
√

L′
O C′

O C′−1
O

+ S0
{
	 f ◦ S−1

0 (L′
O	Y′ + 	Z′C′

O)S0
}
S−1

0 C′−1
O

− 1

jω

√
L′

O C′
O C

′−1
O 	Y′C

′−1
O . (43)
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From the previous discussion of |||	Z′|||∞ and |||	Y′|||∞
and the fact that 	 f ∝ 1/jω, we find that, at some high
frequencies, we can keep only the first term in (42) and (43).
Thus, ZC gets close to the FIR matrix

ZC0 =
√

L′
OC′

O C′−1
O (44)

and G is near to the imaginary matrix

G0 = jω
√

L′
OC′

O = S0�0S−1
0 . (45)

We want now to find approximate models of the intercon-
nection, for which the characteristic impedance matrix is FIR
and for which the transition matrices from modal variables to
natural variables can be chosen to be FIR matrices containing
generalized associated eigenvectors. In a way, we want to trade
the accuracy of our original MTL model for a simplification.

Thus, let us consider a second MTL having a characteristic
impedance matrix equal to ZC0 and a lineic propagation matrix
equal to G0. According to our discussion, this MTL can be
used to model our interconnection at high frequencies. By (28)
and (31), the p.u.l. impedance matrix and the p.u.l. admittance
matrix of the second MTL are jωL′

O and jωC′
O , respectively.

Thus, we can use S0 and T0 as transition matrices from modal
variables to natural variables. We see that, in the second MTL,
the desired simplification has been obtained, but all losses are
neglected. The second MTL is, therefore, not satisfactory for
most on-package and on-chip interconnections, since we know
that losses often play an important role in their behavior at
high frequency.

To obtain a better approximation, we can define a third MTL
having a characteristic impedance matrix ZC3 exactly given by
the right-hand side of (43) and a lineic propagation matrix G3
exactly given by the right-hand side of (42). However, ZC3
and the transition matrices from modal variables to natural
variables, denoted by S3 and T3, need not be FIR, because
the curly bracket in (42) and (43) need not be diagonal or
real. Thus, the third MTL enhances the accuracy as compared
to the second MTL since it is correct to the first order in 	Z′
and 	Y′, but it does not have the property that we are looking
for.

We therefore try a different approach, according to which
we define a fourth MTL having a characteristic impedance
matrix equal to ZC0 and a lineic propagation matrix given by

G4 = S0 Diag(S−1
0 GS0)S

−1
0 (46)

where, for a square matrix A, Diag(A) denotes the diagonal
matrix having the same diagonal entries as A. A part of the
effects of losses is lost in G4 but a remaining part is not. Let
us use Z′

4 to denote the p.u.l. impedance matrix of the fourth
MTL, and Y′

4 to denote its p.u.l. admittance matrix. By (28)
and (31), we have {

Z′
4 = G4ZC0

Y′
4 = Z−1

C0G4.
(47)

Using (46), we obtain

Z′
4Y′

4 = S0

[
Diag(S−1

0 GS0)

]2

S−1
0 (48)
TABLE I

FOUR MODELS CONSIDERED IN SECTION IV

Name Matrices Accuracy

First MTL
ZC need not be FIR

ExactG need not be FIR

S, T need not be FIR

Second MTL
ZC0 is FIR

LowG0 is FIR

S0, T0 are FIR

Third MTL
ZC3 need not be FIR

High (see Section V)G3 need not be FIR

S3, T3 need not be FIR

Fourth MTL
ZC0 is FIR

Medium (see Section V)G4 need not be FIR

S0, T4 are FIR

Fig. 2. Cross section of a multiconductor microstrip interconnection
comprising n = 4 TCs and a GC.

and

Y′
4Z′

4 = Z−1
C0S0

[
Diag(S−1

0 GS0)

]2

S−1
0 ZC0. (49)

Thus, for the fourth MTL, a possible transition matrix from
modal voltages to natural voltages is S0 and a possible FIR
transition matrix from modal currents to natural currents is
given by

T4 = zK Z−1
C0S0 = zK jωC′

0S0�
−1
0 (50)

where zK is an arbitrary FIR impedance, and where we have
used (14) applied to the second MTL.

Thus, we have obtained an approximate model which does
not neglect losses, for which the characteristic impedance
matrix is FIR and for which S0 and T4 are FIR transition
matrices from modal variables to natural variables which,
according to Theorem 3, contain generalized associated eigen-
vectors. Also, (44) and (50) show that losses are ignored in
the computation of ZC0, S0, and T4. Table I summarizes the
properties of the models considered in this section, and their
expected accuracy at high frequency.

V. COMPARISON OF HIGH-FREQUENCY APPROXIMATIONS

We now want to compare the accuracy of the second, third,
and fourth MTL defined in Section IV as approximate models
of an interconnection. For this comparison, we consider a
multiconductor microstrip interconnection shown in Fig. 2,
built in the substrate of an MCM-L, with the parameters t =
w1 = w2 = h = d1 = d2 = 50 μm. To obtain the p.u.l.
impedance of this interconnection, we have used the analytical
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Fig. 3. Taking only resistive losses into account. Curve A: error of ZC0 .
Curve B: error of ZC3. Curve C: error of G0. Curve D: error of G3. Curve E:
error of G4.

resistive loss model described in [17]. This model uses the
p.u.l. external inductance matrix, denoted by L′

0, the matrix
of the equivalent inverse widths of the TCs, and the matrix
of the equivalent inverse widths of the GC, all of which have
been computed for this configuration [18, Sec. VII]. To obtain
the p.u.l. admittance of this interconnection, we have used
the second model described in [19], according to which the
complex permittivity is a logarithm of a bilinear function of
the Laplace variable. This model was used with parameters
corresponding to a high-speed multifunctional epoxy laminate,
in which the relative permittivity is 3.39–0.037 j at 1 GHz. The
resulting MTL model of the interconnection is such that S, T,
and ZC are frequency dependent.

We have studied the approximations of Section IV, for which
we have used L′

O = L′
0 and C′

O such that ωC′
O is equal to

the imaginary part of Y′ at 1 GHz. We have considered the
error in the approximation of several matrices, where the error
of a matrix A is defined as

e(A) = |||A − AE |||∞
|||AE|||∞ (51)

where AE is the exact value of A.
Taking only resistive losses into account, we have obtained

the results shown in Fig. 3 for the errors of ZC0, of ZC3, of
G0, of G3, and of G4. Here, the fact that |||	Z′|||∞ = o(ω)
as ω → ∞ entails that the errors vanish as ω → ∞. The
fact that, at high frequencies, the errors of ZC3 and of G3 are
much smaller than the errors of ZC0 and of G0, respectively,
indicates that (42) and (43) provide an increased accuracy
compared to the first term of their right-hand sides. At every
frequency shown, the error of G4 is more than one order of
magnitude smaller than the errors of G0. These results agree
with the last column of Table I.

Taking all losses into account, we have obtained the results
shown in Fig. 4 for the errors of ZC0, ZC3, G0, G3, and G4.
Here, our choice of C′

O is such that |||	Y′|||∞ reaches a
Fig. 4. Taking resistive and dielectric losses into account. Curve A: error of
ZC0. Curve B: error of ZC3. Curve C: error of G0. Curve D: error of G3.
Curve E: error of G4.

minimum near 1 GHz, so that we observe that the errors of
ZC3 and of G3 reach a minimum near 1 GHz. Again, at
every frequency shown, the error of G4 is more than one
order of magnitude smaller than the errors of G0.

If we are interested in the characteristic impedance matrix,
the accuracy of the third MTL, which uses ZC3, is higher than
that of the second and fourth MTLs, which both use ZC0. In
fact, we see that ZC3 given by (43) can be used to assess
e(ZC) at high frequencies, for the second and fourth MTLs.
We obtain (52), shown at the bottom of the page, which is
valid without upper frequency limit if 	Y′ = 0, or at least
up to the frequency at which ωC′

O is equal to the imaginary
part of Y′, in the case where 	Y′ �= 0. In Figs. 3 and 4, the
domain of validity of (52) is the frequency interval where the
curve B is well below the curve A.

If we are interested in the lineic propagation matrix, the
accuracy of the third and fourth MTLs, which uses G3 and
G4, respectively, is higher than that of the second MTL, which
uses G0. However, Figs. 3 and 4 show that the third MTL is
not clearly always better or worse than the fourth MTL, which
uses G4.

We are now interested in the characteristics of the different
MTL models with respect to the simulation of a link. We have
computed the signals at the ends of a 20-mm-long section
of the interconnection, used in a conventional single-ended
signaling configuration in which each end sees an impedance
matrix of 50 � × 1n with respect to the GC, where 1n

is the identity matrix of size n × n. A comparison of the
exact MTL model with the second MTL model (lossless) is
shown in Fig. 5. The inaccuracy of the second MTL model
is visible above 5 GHz. A comparison of the exact MTL
model with the fourth MTL model is shown in Fig. 6. In this
case, no difference between the computed voltages is visible
above 2 GHz because the high frequency losses are accurately
accounted for.

The example considered in this section and the theory
of Section IV allows us to write that, for the types of
e(ZC0) ≈
∣∣∣∣∣∣∣∣∣S0

{
	 f ◦ S−1

0 (L′
O	Y′ + 	Z′C′

O)S0

}
S−1

0 C′−1
O − 1

jω

√
L′

O C′
OC′−1

O 	Y′C′−1
O

∣∣∣∣∣∣∣∣∣∞∣∣∣∣∣∣∣∣∣√L′
OC′

O C′−1
O

∣∣∣∣∣∣∣∣∣∞
(52)
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Fig. 5. Attenuations at the far end when a signal is applied at the near end
of TC2. Curve A: exact signal on TC2. Curve B: signal on TC2 according to
the second MTL model. Curve C: exact signal on TC3. Curve D: signal on
TC3 according to the second MTL model.

Fig. 6. Attenuations at the far end when a signal is applied at the near end
of TC2. Curve A: exact signal on TC2. Curve B: signal on TC2 according
to the fourth MTL model. Curve C: exact signal on TC3. Curve D: signal on
TC3 according to the fourth MTL model.

interconnection considered in this paper:

1) it is usually possible to consider that, in a band of the
highest frequencies of interest, losses can be ignored in
the computation of the characteristic impedance matrix
and of transition matrices from modal electrical vari-
ables to natural electrical variables, so as to obtain FIR
matrices;

2) this assumption does not necessarily lead us to an
MTL model in which losses are ignored or inaccurately
accounted for in said frequency band;

3) this assumption is not in contradiction with the fact that
the attenuation of transmitted signals is higher at high
frequencies;

4) moreover, it is possible to require that said transi-
tion matrices from modal electrical variables to natural
electrical variables contain FIR generalized associated
eigenvectors.

VI. CONCLUSION

In this paper, we presented several additions to MTL theory,
which are needed to explain modal transmission schemes.

In each channel of a link using modal transmission, a modal
voltage and a modal current are used for signal transmission,
instead of a natural voltage and a natural current in
single-ended signaling. This is because the modal variables
are expected to propagate like a voltage and a current in an
isolated two-conductor TL, hence without crosstalk. We have
shown that this total decoupling occurs, and only occurs, with
generalized associated eigenvectors.

We have also explored high-frequency approximations. This
has allowed us to justify an assumption commonly used in
the design of a modal link: an approximate model of the
interconnection, which accurately takes high-frequency losses
into account, can use a characteristic impedance matrix and
a transition matrix from modal electrical variables to natural
electrical variables which are computed as if losses were
not present. Our justification is not a general proof of the
assumption, so that the validity of the approximate model
should be considered on a case-by-case basis, for instance
using the ex-ante approach proposed in Section V or an
ex-post performance analysis of the modal link synthesis based
on the assumption.

APPENDIX

PRIMARY MATRIX FUNCTIONS

Let A be a diagonalizable matrix of size n × n and
let A = ��−1 be any diagonalization of A with
 = diagn(λ1, . . . ,λn). Let f (u) be a continuous scalar-valued
function of a real or complex variable u, defined at each λα ,
for α ∈{1, . . . , n}. The matrix-valued function f (A) given
by

f (A) = � diagn ( f (λ1), . . . , f (λn)) �−1 (53)

is independent of the diagonalization used to represent A. This
definition can be extended to nondiagonalizable matrices, if
f (u) is smooth enough near the spectrum of A [10, Sec. 6.2.4].
f (A) commutes with any matrix that commutes with A. f (A)
is the primary matrix function associated with f (u), and f (u)
is referred to as the stem function of f (A).

A theorem on the continuity of f (A) reads as follows. Let
D ⊂ C be a simply connected open set. Let Dn(D) be the
set of the matrices of size n × n having all their eigenvalues
in D. Let f (u) be a scalar-valued analytic function on D.
f (A) is continuous on Dn(D) [10, Sec. 6.2.27].

Using
√

u to denote the principal square root of u ∈ C and
f (u) = √

u as stem function, we define f (A) = √
A for a

nonsingular matrix A [10, Sec. 6.2.14]. This primary matrix
function can be referred to as principal matrix square root. It
can be shown that [10, Sec. 6.2.10]

√
A

2 = √
A

√
A = A. (54)

However, for two invertible matrices A and B, there is no
simple general relationship between

√
AB as a function of√

A
√

B or of
√

B
√

A. For any matrix A, using g(u) = eu

as stem function, we define g(A) = eA. This primary matrix
function is referred to as matrix exponential. It can be shown
that [10, Sec. 6.2.38]

e−A = (eA)−1 and e pA = (eA)P (55)
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where p is any integer. For a nonsingular matrix A,
g ( f (A)) = e

√
A is defined, and by [10, Sec. 6.2.11] it is

the primary matrix function associated with g ( f (u)) = e
√

u .
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