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Contribution to the Theory of Planar Wire Loop
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Abstract—Using “electromagnetic field” to designate an elec-
tric field and a magnetic field which satisfy Maxwell’s equations,
we define a decomposition of an arbitrary incident time-harmonic
electromagnetic field into four elementary time-harmonic elec-
tromagnetic fields FA, FB , FC , and FD . A formula, which
gives the response of an arbitrary planar wire loop antenna
used for reception, is based on this decomposition. This formula
is applicable to any incident field configuration, and valid at
any frequency at which the thin wire approximation applies. It
separates the response of the antenna into three parts, one of
which may be viewed as the intended response of the antenna.
Our analysis teaches that FC and FD have no effect on the
antenna and how FA and FB excite the antenna. Thus, it allows
us to better understand the characteristics and limitations of a
planar wire loop antenna used as a measuring antenna or as a
direction finder.

Index Terms—Antenna theory, electrically small antenna, loop
antenna, measuring antenna, receiving antenna.

I. INTRODUCTION

AN ELECTRICALLY small loop antenna may be
used for measuring a magnetic component of an

electromagnetic field [1]. For accurate measurements using
a circular loop antenna, the feeder (i.e., feed line) of the
antenna is often connected to the loop by utilizing a shielded-
loop configuration, which prevents common-mode currents on
the feeder from affecting the antenna’s response [2, Sec. 5-4]
[3, Sec. 11.8]. The shield of a shielded-loop antenna operates
like an unshielded loop antenna. Loop antennas are used for
electromagnetic compatibility (EMC) testing in laboratories,
and for various types of outdoor measurements such as site
surveys, proof of performance of fixed antennas, propagation
measurements, and spectrum monitoring [4, Sec. 13 Par. 41],
[5]–[11]. Loop antennas that need not be electrically small
are also used in direction-finding systems and high-frequency
ground-wave radars [4, Sec. 12], [12]–[14].

According to a simplistic analysis, an open-circuit voltage at
the port of an electrically small loop antenna used for reception
is given by jωSµ0HNA, where ω is the radian frequency of an
incident electromagnetic field and HNA is the magnetic field
normal to the plane of the loop, averaged over the surface
S of the loop [2, Sec. 5-2]. A more elaborate analysis is
available for electrically small single-turn square or circular
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loop antennas subject to an incident plane wave having a
real wave vector, which provides an approximate formula that
includes a response of the loop antenna to the polarization
for which HNA is zero [1], [3, Sec. 11.7]. Unfortunately,
this analysis only applies to an incident plane wave having
a known real wave vector, or to several such waves if the
formula is used repeatedly. Thus, it does not provide a general
picture of what is sensed by the antenna if it is subject to
an arbitrary incident electromagnetic field. For instance, it
does not apply to the standard-field calibration technique, in
which the circular loop antenna of a field-strength meter to be
calibrated is excited by a coaxial circular loop placed at an
electrically short distance [5]. For instance, it does not apply
to measurement configurations in which a planar loop antenna
used for measurements lies in the near-field of a device under
test. For instance, it does not apply to outdoor measurements
where multiple sources at unknown locations contribute to the
measured signal.

Broadly speaking, the purpose of this paper is to investigate
some general properties of a planar wire loop antenna (which
need neither be electrically small, nor circular) used for
receiving an incident electromagnetic field (which need not be
a uniform plane wave), to better understand its characteristics
and limitations as a measuring antenna or as a direction finder.
We shall use “electromagnetic field” to designate the ordered
pair F = (E,H) of an electric field E and a magnetic field H

which satisfy Maxwell’s equations in a specified region. The
main new results of this paper are:

• a simple decomposition of an arbitrary incident time-
harmonic electromagnetic field into 4 elementary time-
harmonic electromagnetic fields (ETHEFs), defined in
Section III, which is relevant to better understand the
operation of planar wire loop antennas; and

• an exact formula, obtained in Section IV, which is based
on the ETHEF decomposition and which provides the
open-circuit voltage at the port of a planar wire loop
antenna having any shape, structure and size, subject to
an arbitrary incident time-harmonic electromagnetic field.

The ETHEF decomposition is applied to different incident
electromagnetic fields, in Sections V and VI.

II. ASSUMPTIONS AND KNOWN RESULTS

A. Assumptions About the Loop Antenna

We use the traditional rectangular coordinate system Oxyz,
of unit vectors ux , uy , and uz. We use “planar wire loop
antenna” to designate an antenna made of a single thin wire
lying in the plane z = 0. This thin wire forms a curve, the ends
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Fig. 1. A non-self-intersecting planar loop antenna (a), the surface inside
the single loop formed by this antenna and the arbitrary path over the gap
(b), and a self-intersecting planar loop antenna (c).

of which are connected to the terminals of the antenna port,
which lie in the plane z = 0. The physical space between these
terminals is the gap. An arbitrary path over the gap, which is
assumed to lie in the plane z = 0, is added to this curve, to
obtain a closed path.

A front view of a non-self-intersecting planar loop antenna
is shown in Fig. 1(a). For this type of loop antenna, the thin
wire and the arbitrary path over the gap form a non-self-
intersecting continuous loop in the plane z = 0, which bounds
the surface shown in Fig. 1(b).

A front view of a self-intersecting planar loop antenna is
shown in Fig. 1(c). We assume that there is no electric contact
at the crossing points which appear in the front view. This
implies that, at such a crossing point, the crossing arcs of the
wire are separated in the z direction. Thus, the antenna is not
strictly planar, but we nevertheless assume that the extent of
the loop antenna in the z direction is so small that it may be
ignored in our computations. For this type of loop antenna,
the thin wire and the arbitrary path over the gap have multiple
turns. We will see in Section IV how we can count the turns
and identify the corresponding loops.

B. Reception by a Thin Wire Antenna

For any wire antenna, the open circuit voltage eant of the
antenna used for reception is given by

eant = −
1

I0

∫∫∫

Antenna
Jt · Ei dv (1)

where Jt is the current density in the antenna if it is used for
emission and a current I0 flows into the positive terminal of
the antenna port, where Ei is the incident electric field, and
where dv is a volume element [15, Sec. 13.06]. It must be
emphasized that this formula is exact, since it is only based
on reciprocity. In the case of a thin-wire antenna along which
a curvilinear abscissa s is defined, we obtain

eant = −

∫

Antenna

i(s)

I0
ut · Ei (s) ds (2)

where i(s) is the current in the thin wire if the antenna is used
for emission and a current I0 flows into the positive terminal
of the antenna port, where ut is a unit vector tangent to the
thin wire, its direction being the direction of positive current,

where Ei (s) is the incident electric field, and where ds is the
length element.

C. TE and TM Components

We consider an arbitrary incident time-harmonic electro-
magnetic field Fi = (Ei ,Hi ), in an homogeneous and
source-free region characterized by the complex permittivity
ε and the complex permeability µ, so that k = ω(εµ)1/2,
where the power 1/2 means the principal square root. It is
well known that Fi can be expressed as the sum of two
components: an electromagnetic field FT M = (ET M ,HT M )

transverse magnetic (TM) to z; and an electromagnetic field
FT E = (ET E ,HT E ) transverse electric (TE) to z [16, Ch. 13],
[17, Sec. 3.12]. For FT M , we have

HT M = ∇ × (ψT Muz) = ∇ψT M × uz (3)

and

ET M =
1

jωε
∇ × ∇ × (ψT Muz) (4)

where the scalar distribution ψT M has the dimensions of
current and satisfies the Helmholtz equation

∇2ψT M + k2ψT M = 0. (5)

Let us use ETMx , ET My , and ET Mz to denote the rectan-
gular coordinates of ET M , and HTMx , HTMy , and HTMz to
denote the rectangular coordinates of HT M . We have

ET Mx =
1

jωε

∂2ψT M

∂x∂z
(6)

ET My =
1

jωε

∂2ψT M

∂y∂z
(7)

ET Mz = −
1

jωε

(

∂2ψT M

∂x2
+
∂2ψT M

∂y2

)

=
1

jωε

(

∂2ψT M

∂z2
+ k2ψT M

)

(8)

HTMx =
∂ψT M

∂y
(9)

HTMy = −
∂ψT M

∂x
(10)

and

HTMz = 0. (11)

For FT E , we have

ET E = −∇ × (ψT Euz) = −∇ψT E × uz (12)

and

HT E =
1

jωµ
∇ × ∇ × (ψT Euz) (13)

where the scalar distribution ψT E has the dimensions of
voltage and satisfies the Helmholtz equation

∇2ψT E + k2ψT E = 0. (14)
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Let us use ET Ex , ET Ey , and ET Ez to denote the rectangular
coordinates of ET E , and HT Ex , HT Ey , and HT Ez to denote
the rectangular coordinates of HT E . We have

ET Ex = −
∂ψT E

∂y
(15)

ET Ey =
∂ψT E

∂x
(16)

ET Ez = 0 (17)

HT Ex =
1

jωµ

∂2ψT E

∂x∂z
(18)

HT Ey =
1

jωµ

∂2ψT E

∂y∂z
(19)

and

HT Ez = −
1

jωµ

(

∂2ψT E

∂x2
+
∂2ψT E

∂y2

)

=
1

jωµ

(

∂2ψT E

∂z2
+ k2ψT E

)

. (20)

Let Ei and Hi be the electric field and the magnetic field
of Fi , respectively. Since, as explained above,

Fi = FT E + FTM (21)

it follows from (8) and (17) that the distribution ψT M satisfies

∂2ψT M

∂z2
+ k2ψT M = jωεEiz (22)

which can be used to determine ψT M if Eiz = Ei · uz is
known, and it follows from (11) and (20) that the distribution
ψT E satisfies

∂2ψT E

∂z2
+ k2ψT E = jωµHiz (23)

which can be used to determine ψT E if Hiz = Hi ·uz is known.
The existence of a decomposition of Fi into a TM compo-

nent (the electromagnetic field FTM ) and a TE component
(the electromagnetic field FT E ) does not entail that this
decomposition is unique. This is caused by the fact that Fi

may comprise an electromagnetic field which is both TE to z
and TM to z, which may therefore be either a part of FT M or
a part of FT E [18, Sec. 10.3]. We will use this observation in
the definition of ψT E in Section V.

III. THE ETHEFS OF AN INCIDENT ELECTROMAGNETIC

FIELD

A. Mirror-Symmetric and Mirror-Antisymmetric Parts

We consider an arbitrary incident time-harmonic electro-
magnetic field Fi , in a region which includes a part of the
plane z = 0. Let Fm be the result of the transformation of
Fi under reflection in the plane z = 0. Let Ei (x, y, z) and
Hi (x, y, z) be the electric field and the magnetic field of Fi ,
respectively, at a point of rectangular coordinates (x, y, z);
and Em(x, y, z) and Hm(x, y, z) be the electric field and the
magnetic field of Fm , respectively, at this point. We know that
Fm is an electromagnetic field which satisfies [19, Sec. 6.11]:

Em(x, y,−z) = Ei (x, y, z)− 2(Ei (x, y, z) · uz)uz (24)

and

Hm(x, y,−z) = −[Hi(x, y, z)− 2(Hi(x, y, z) · uz)uz]

(25)

Let us use Eix (x, y, z), Eiy(x, y, z), and Eiz(x, y, z) to
denote the rectangular coordinates of Ei (x, y, z); Emx (x, y, z),
Emy(x, y, z), and Emz(x, y, z) the rectangular coordinates
of Em(x, y, z); Hix(x, y, z), Hiy(x, y, z), and Hiz(x, y, z)
the rectangular coordinates of Hi (x, y, z); and Hmx(x, y, z),
Hmy(x, y, z), and Hmz(x, y, z) the rectangular coordinates of
Hm(x, y, z). Eq. (24) and (25) are equivalent to

Emx (x, y,−z) = Eix (x, y, z) (26)

Emy(x, y,−z) = Eiy(x, y, z) (27)

Emz(x, y,−z) = −Eiz(x, y, z) (28)

Hmx(x, y,−z) = −Hix(x, y, z) (29)

Hmy(x, y,−z) = −Hiy(x, y, z) (30)

and

Hmz(x, y,−z) = Hiz(x, y, z). (31)

We can now define the mirror-symmetric part of Fi as

FMS =
Fi + Fm

2
(32)

and the mirror-antisymmetric part of Fi as

FAS =
Fi − Fm

2
. (33)

Being linear combinations of electromagnetic fields, FMS

and FAS are electromagnetic fields. Since

Fi = FMS + FAS (34)

we have obtained a decomposition of Fi into two electromag-
netic fields.

Let us use EMS(x, y, z) and HMS(x, y, z) to denote the
electric field and the magnetic field of FMS , respectively,
at a point of rectangular coordinates (x, y, z). Let us use
EMSx(x, y, z), EMSy(x, y, z), and EMSz(x, y, z) to denote the
rectangular coordinates of EMS(x, y, z); and HMSx(x, y, z),
HMSy(x, y, z), and HMSz(x, y, z) to denote the rectangular
coordinates of HMS(x, y, z). By (26)–(32), we have

EMSx(x, y, 0) = Eix (x, y, 0) (35)

EMSy(x, y, 0) = Eiy(x, y, 0) (36)

EMSz(x, y, 0) = 0 (37)

HMSx(x, y, 0) = HMSy(x, y, 0) = 0 (38)

and

HMSz(x, y, 0) = Hiz(x, y, 0). (39)

Let us use EAS(x, y, z) and HAS(x, y, z) to denote the
electric field and the magnetic field of FAS , respectively,
at a point of rectangular coordinates (x, y, z). Let us use
EASx(x, y, z), EASy(x, y, z), and EASz(x, y, z) to denote the
rectangular coordinates of EAS(x, y, z); and HASx(x, y, z),
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HASy(x, y, z), and HASz(x, y, z) to denote the rectangular
coordinates of HAS(x, y, z). By (26)–(31) and (33), we have

EASx(x, y, 0) = EASy(x, y, 0) = 0 (40)

EASz(x, y, 0) = Eiz(x, y, 0) (41)

HASx(x, y, 0) = Hix(x, y, 0) (42)

HASy(x, y, 0) = Hiy(x, y, 0) (43)

and

HASz(x, y, 0) = 0. (44)

B. Definition of the ETHEFs

We consider an arbitrary incident time-harmonic electro-
magnetic field Fi , in an homogeneous and source-free region
which includes a part of the plane z = 0, and which is
characterized by the complex permittivity ε, and the complex
permeability µ. For an arbitrary vector v, we use vz to denote
v · uz, and v⊥ to denote the vector

v⊥ = v − (v · uz)uz = (v · ux )ux + (v · uy)uy . (45)

Likewise, we introduce the operator ∇⊥ which, in cartesian
form, is

∇⊥ = ux
∂

∂x
+ uy

∂

∂y
(46)

so that

∇2
⊥ =

∂2

∂x2 +
∂2

∂y2
. (47)

We first apply the TM/TE decomposition, to obtain FT M

and FT E . By (3) and (6)–(11), FT M is given by:

ET M⊥ =
1

jωε

∂

∂z
∇⊥ψT M (48)

ET Mz = −
1

jωε
∇2

⊥ψT M (49)

HT M⊥ = ∇ψT M × uz = ∇⊥ψT M × uz (50)

and

HTMz = 0. (51)

By (12) and (15)–(20), FT E is given by:

ET E⊥ = −∇ψT E × uz = −∇⊥ψT E × uz (52)

ET Ez = 0 (53)

HT E⊥ =
1

jωµ

∂

∂z
∇⊥ψT E (54)

and

HT Ez = −
1

jωµ
∇2

⊥ψT E . (55)

We define the four ETHEFs of Fi as follows:

• the first ETHEF is the mirror-symmetric part of FT E ,
denoted by FA = (EA,HA);

• the second ETHEF is the mirror-symmetric part of FT M ,
denoted by FB = (EB ,HB);

• the third ETHEF is the mirror-antisymmetric part of FT E ,
denoted by FC = (EC ,HC ); and

Fig. 2. The planar loop antenna of Fig. 1(c), and the nonzero vectors given
by (57)–(64), each represented at an arbitrary observation point in the plane
z = 0, as if it was a real vector having the dimensions of length. The vectors
which are orthogonal to the plane z = 0 are shown in the right side view of
the loop antenna (a). The vectors which lie in the plane z = 0 are shown in
the front view of the loop antenna (b).

• the fourth ETHEF is the mirror-antisymmetric part of
FT M , denoted by FD = (ED,HD).

By (21) and (34), we have

Fi = FA + FB + FD + FC (56)

which provides a decomposition of Fi into four components,
each of which could exist independently of the others.

By (35)–(44) and (48)–(55), in the plane z = 0, we have

EA = −∇⊥ψT E × uz (57)

HA = −
uz

jωµ
∇2

⊥ψT E (58)

EB =
1

jωε

∂

∂z
∇⊥ψT M (59)

HB = 0 (60)

EC = 0 (61)

HC =
1

jωµ

∂

∂z
∇⊥ψT E (62)

ED = −
uz

jωε
∇2

⊥ψT M (63)

and

HD = ∇⊥ψT M × uz. (64)

Since ∇⊥ψT M and ∇⊥ψT E are normal to uz, it follows that,
in the plane z = 0:

• FA has a magnetic field which is normal to this plane,
whereas FB , FC , and FD have each a magnetic field
which is parallel to this plane, or a null vector; and

• FA and FB each have an electric field which is parallel
to this plane, whereas FC and FD have each an electric
field which is normal to this plane, or a null vector.

The vectors given by (57)–(64) are represented in Fig. 2.
Using (56)–(64), we find that, in the plane z = 0,

HA = (Hi · uz)uz (65)

and

ED = (Ei · uz)uz. (66)
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Thus, even though FTM and FT E need not be uniquely
defined, HA, HB , EC and ED are uniquely defined in the
plane z = 0. Also, EA + EB and HC + HD are uniquely
defined everywhere, because they are the electric field of the
mirror-symmetric part of Fi , and the magnetic field of the
mirror-antisymmetric part of Fi , respectively.

IV. RESPONSE OF A PLANAR LOOP

ANTENNA OF ANY SHAPE AND SIZE

By (2) and (56), the open-circuit voltage of the planar wire
loop antenna of Section II-A, used for reception of the incident
time-harmonic electromagnetic field Fi , is given by

eant = −

∮

i(s)

I0
ut · (EA + EB + EC + ED) ds (67)

where the integration path is closed by the arbitrary path
over the gap, in which i(s) = 0. For reasons which will
become apparent later, the arbitrary path over the gap should
be as short as possible, for instance a straight line, but this is
not required. The positive orientation of the integration path,
which corresponds to the orientation of ut , goes from the
positive terminal of the antenna port to the negative terminal
of the antenna port along the thin wire, and then from the
negative terminal to the positive terminal along the arbitrary
path over the gap. Using (61) and (63), we get

eant = −

∮

I0 + (i(s)− I0)

I0
ut · (EA + EB) ds. (68)

FA and FB being electromagnetic fields, we have ∇×EA =

− jωµHA and ∇ × EB = − jωµHB . Thus, if the integration
path has a single turn, we have

∮

ut · (EA + EB) ds = − jωµκ

∫∫

S

(HA + HB) · uz da

(69)

where κ = 1 if the orientation of the integration path agrees
with the orientation uz of the surface-element da of the plane
z = 0, and κ = −1 in the opposite case. The assumption “the
integration path has a single turn” means that the integration
path forms a non-self-intersecting continuous loop in the plane
z = 0. It entails that the line integral of the left-hand side
of (69) is, according to Stoke’s theorem, equal to a surface
integral over the part of the plane z = 0 which is bounded by
the integration path, this part being denoted by S in (69). By
(60), we have

∮

ut · (EA + EB) ds = − jωµκ

∫∫

S

HA · uz da. (70)

If the integration path forms a self-intersecting continuous
loop in the plane z = 0, we use the following algorithm: (step
1) we start from the positive terminal of the antenna port and
set the turn index n to 0; (step 2) moving along the integration
path in the positive direction, as soon as a loop is formed with
the part of the integration path already traveled and not erased,
n is incremented by 1, the value κn of κ for this loop n is
determined as explained above, and the line integral over loop
n is, using Stoke’s theorem, replaced with a surface integral
over the part of the plane z = 0 which is bounded by loop n,

Fig. 3. The planar loop antenna of Fig. 1(c), and the 3 surfaces bounded by
a loop obtained using the proposed algorithm.

this part being denoted by S(n); (step 3) this loop is erased
from the integration path for the rest of the algorithm; (step 4)
if the end of the integration path is not reached, we go back
to step 2, otherwise we go to step 5; and (step 5) we set the
number of turns, denoted by N , to n and end the algorithm.

For the planar loop antenna of Fig. 1(c), an implementation
of this algorithm is represented in Fig. 3, in which (a) shows
S(1); (b) shows S(2); and (c) shows S(3). In this example,
we have N = 3 and κ1 = κ2 = κ3. Using Fig. 2(b), we find
κ1 = κ2 = κ3 = −1. We note that the algorithm would not
work if the antenna was not planar. The algorithm leads us to
the general result

∮

ut · (EA + EB) ds = − jωµ

N
∑

n=1

κn

∫∫

S(n)

HA · uz da.

(71)

Using (71) in (68), we obtain

eant = jωµ

N
∑

n=1

κn

∫∫

S(n)

HA · uz da

−

∮

i(s)− I0

I0
ut · (EA + EB) ds (72)

which, for a single loop or identical loops, becomes

eant = jωµNκ

∫∫

S

HA · uz da

−

∮

i(s)− I0

I0
ut · (EA + EB) ds. (73)

In (72) and (73), the line integral is zero if i(s) is uniform
in the thin wire and if the length of the arbitrary path over
the gap is zero. It may therefore be ignored if the frequency
is sufficiently low to allow us to consider that i(s) = I0
everywhere in the thin wire, and if the length of the arbitrary
path over the gap is sufficiently short. This is why the arbitrary
path over the gap should be as short as possible. As said in
Section III, HA and EA+EB are uniquely defined in the plane
z = 0, so that (72) and (73) are uniquely defined. In (72) and
(73), the contributions of HA and EA are related because they
correspond to the effect of FA, determined by ψT E , whereas
the contribution of EB , which corresponds to the effect of
FB , determined by ψT M , is completely independent from the
contributions of HA and EA .

The decomposition of Fi into four ETHEFs is particularly
relevant to planar wire loop antennas which are intended to, or
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expected to, be mainly responsive to a magnetic field orthogo-
nal to the plane of the antenna (such as most electrically small
planar wire loop antennas), since, in this context:

• the ETHEF FA causes the intended or expected response
of the antenna;

• the ETHEF FB may cause an unwanted or unexpected
response of the antenna; and

• the ETHEFs FC and FD cannot cause any response of
the antenna.

The use of HA, EA , and EB in (72) and (73) shows how
FA and FB excite the antenna. However, computing HA, EA,
and EB is not required to obtain eant , since, by (56)–(64), we
also have

eant = jωµ

N
∑

n=1

κn

∫∫

S(n)

HT E · uz da

−

∮

i(s)− I0

I0
ut · (ET E + ET M ) ds (74)

if we use the decomposition of Fi into FT E and FT M , and

eant = jωµ

N
∑

n=1

κn

∫∫

S(n)

Hi · uz da

−

∮

i(s)− I0

I0
ut · Ei ds (75)

if we use no decomposition of Fi . If HA, EA, and EB are
not known, (74) or (75) may be easier to compute than
(73). However, they require information that is not needed
to determine eant , because, at z = 0, Hi , and Ei contain
more information about Fi than HT E , ET E , and ET M , which
contain more information about Fi than HA, EA , and EB , the
unnecessary information being ignored in (74) and (75).

V. APPLICATION TO AN INCIDENT PLANE WAVE

Let ki = kixux + kiyuy + kizuz be an arbitrary complex
wave vector such that

ki · ki = k2 = ω2εµ. (76)

Let iT M be an arbitrary complex number having the dimen-
sions of current, vT M be an arbitrary complex number having
the dimensions of voltage, and eT EM be an arbitrary complex
vector having the dimensions of electric field and such that
eT EM · uz = 0. Here, iT M , vT M , and eT EM are independent
of the observation point. The radius vector of the observation
point being denoted by r, we posit

ψT M = iTM e− jki ·r (77)

so that (5) is satisfied. We posit

ψT E =

{

(eT EM × uz) · r e− jki ·r, if kix = kiy = 0

vT E e− jki ·r, else
(78)

so that (14) is satisfied in both cases. The first case of (78)
corresponds to a wave which is TE to z and TM to z (i.e.,
TEM to z), arbitrarily considered as a TE wave.

Here, Fi is a general time-harmonic plane wave in an
homogeneous and source-free region characterized by the
complex permittivity ε and the complex permeability µ. It

Fig. 4. The planar loop antenna of Fig. 1(c), and the vectors β i and βm ,
each represented at an arbitrary observation point in space, as if they had the
dimensions of length. They are independent of the observation point.

is discussed in [17, Sec 2.11] and [17, Sec 4.2], where it is
explained that the real part of ki indicates the direction of
propagation. Let kiz = ki · uz and ki⊥ be the vector defined
by letting v = ki in (45). Using (48)–(55), we find that the
TE and TM components of Fi are, if ki⊥ 6= 0, given by

ET E = jvT E ki⊥ × uz e
− jki ·r (79)

HT E =
vT E

jωµ
[(ki⊥ · ki⊥)uz − kizki⊥] e− jki ·r (80)

ET M =
iTM

jωε
[(ki⊥ · ki⊥)uz − kizki⊥] e− jki ·r (81)

and

HT M = − j iTM ki⊥ × uz e
− jki ·r (82)

whereas, if ki⊥ = 0, we obtain

ET E = eT EM e− jki ·r (83)

HT E =
−kiz

ωµ
eT EM × uz e

− jki ·r (84)

and, of course,

ET M = 0 and HT M = 0. (85)

For any value of ki , we have

ET E · ki = 0 and HT E =
ki

ωµ
× ET E (86)

and

ET M · ki = 0 and HT M =
ki

ωµ
× ET M (87)

so that FT E , FT M , and Fi are TEM to ki . This does not entail
an orthogonality of ET E , HT E , ET M , or HT M to the direction
of propagation, except in the case where ki is real, or, more
generally, in the case were ki is collinear to its real part.

According to (79)–(85), FT E and FT M are plane waves of
wave vector ki , like Fi . In contrast, FA, FB , FC , and FD are
not plane waves, since, according to Section III, each of them
is a linear combination of the incident plane wave of wave
vector ki and a plane wave of wave vector km given by

km = ki − 2(ki · uz)uz = kixux + kiyuy − kizuz. (88)

Fig. 4 shows the planar loop antenna of Fig. 1(c) lying in
the plane z = 0, the real part β i = Re(ki ) of the wave vector
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ki , and the real part βm = Re(km) of the wave vector km .
The values of FA, FB , FC , and FD everywhere in space are
provided in the Appendix. Using (57)–(64) and (77)–(78), or,
alternatively, the results of the Appendix, we obtain, in the
plane z = 0,

EA =

{

eT EM e− jki ·r, if ki⊥ = 0

jvT E ki⊥ × uz e
− jki ·r, if ki⊥ 6= 0

(89)

HA =
vT E

jωµ
(ki⊥ · ki⊥)uz e

− jki ·r (90)

EB =
−iT M

jωε
kizki⊥ e− jki ·r (91)

HC =











kiz

ωµ
uz × eT EM e− jki ·r, if ki⊥ = 0

−vT E

jωµ
kizki⊥ e− jki ·r, if ki⊥ 6= 0

(92)

ED =
iT M

jωε
(ki⊥ · ki⊥)uz e

− jki ·r (93)

and

HD = − j iTM ki⊥ × uz e
− jki ·r (94)

which, combined with (60)–(61), completely define the
ETHEFs.

Let Ei0 be Ei at the origin, and Hi0 be Hi at the origin.
We observe that, based on (21) and (79)–(84), or on (56) and
(89)–(94), if ki⊥ = 0,

eT EM = Ei0 (95)

whereas, if ki⊥ 6= 0,

vT E = − j
Ei0 · (ki⊥ × uz)

ki⊥ · ki⊥

(96)

and

iT M = j
Hi0 · (ki⊥ × uz)

ki⊥ · ki⊥

. (97)

Thus, since Hi0 = ki × Ei0/(ωµ), we find that the
knowledge of ki and Ei0 is sufficient to directly determine
the ETHEFs in the plane z = 0, using (89)–(97).

VI. SOME OTHER PARTICULAR INCIDENT FIELDS

A. Superposition of Plane Waves

It might be convenient to represent Fi as a superposition of
time-harmonic plane waves. For instance, this superposition
may consist of a primary plane wave and its reflection on a
conducting plane, or of an integral of plane waves providing
a plane-wave spectrum representation [20, Sec. 19.2], [21].

The results of Section V are applicable to any complex ki

satisfying (76), so that all possible uniform plane waves and
evanescent plane waves are included. It follows that, if Fi

is a known superposition of time-harmonic plane waves, it is
possible to apply the results of Section V to each of them.
Thus, FA is obtained as a superposition of electromagnetic
fields each given by (89)–(90) applied to one of the time-
harmonic plane waves, FB is obtained as a superposition of
electromagnetic fields each given by (60) and (91) applied to
one of the time-harmonic plane waves, etc.

B. Magnetic Dipole Normal to the Plane z = 0

The electric field produced by a magnetic dipole of moment
m = muz lying at the origin is [20, Sec 15.5] [22, Sec 8.6]

E =
−k2η

4πr

(

1 +
1

jkr

)

ur × m e− j kr

=
k2mη

4πr

(

1 +
1

jkr

)

sin θ uϕ e
− j kr (98)

where η = (µ/ε)1/2, and where r , θ , and ϕ are the usual
spherical coordinates of the observation point, the unitary
vectors of the spherical coordinates being denoted by ur , uθ
and uϕ .

We now consider the electromagnetic field Fi produced by
a magnetic dipole of moment m = muz lying at x = xS ,
y = yS and z = zS . By (98), this spherical wave is such that

Ei =
k2mη

4πD2

(

1 +
1

jkD

)

[−(y−yS)ux + (x−xS)uy] e
− j kD

(99)

where

D =

√

(x − xS)2 + (y − yS)2 + (z − zS)2 (100)

Thus, Fi produced by the magnetic dipole is TE to z, so
that we may write Fi = FT E . Consequently, by the definition
of the ETHEFs, we have, in the plane z = 0,

EA = Ei (101)

and

EB = 0 (102)

which, combined with (65) are sufficient to determine the
different contributions in (72) or (73), if Ei and Hi are known.

C. Circular Loop Parallel to the Plane z = 0

As said in the introduction, a possible calibration technique
for a field-strength meter is the standard-field method, in
which the circular loop antenna of the field-strength meter
to be calibrated is excited by a coaxial single-turn circular
transmitting loop antenna [5]. For instance, the National
Bureau of Standards (NBS) used a transmitting loop of radius
b = 10 cm, up to 50 MHz, the distance d between the planes
of the transmitting loop antenna and of the field-strength
meter’s loop antenna ranging from 1.5 m to 3 m [23]. The
calibration was based on the “formula of Greene”, that is
formula (24) of [24], which takes propagation between the
loops into account, but which assumes a uniform current in
the transmitting loop, because the radius b of the transmitting
loop antenna is (assumed to be) sufficiently small.

We therefore consider the electromagnetic field Fi produced
by a circular loop antenna, in which a practically uniform
current flows, the loop antenna being parallel to the plane
z = 0, its center lying at x = xS , y = yS , and z = zS . In this
case, Ei is everywhere (practically) parallel to the plane z = 0
and may be written in the form of an involved analytic formula
[25]–[32]. Thus, Fi produced by the circular loop antenna
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is (practically) TE to z, so that we may write Fi ≈ FT E .
Consequently, we have, in the plane z = 0,

EA ≈ Ei (103)

and

EB ≈ 0 (104)

which, combined with (65), are sufficient to approximately
determine the different contributions in (72) or (73), if Ei and
Hi are known.

We see that the effects of FB are completely ignored in the
calibration technique described above, so that the resulting
accuracy of the field-strength meter might be questioned.

D. Short Discussion

If we know Fi , we have identified 3 ways of computing
FA and FB in the plane z = 0, in order to be able to
use (72) or (73). The first approach relies on solving the
scalar partial differential equations (22)–(23) to obtain ψT E

and ψT M , deriving FT E and FTM , and using the definition of
the ETHEFs, set out in Section III-B. The second approach,
presented in Section V or Section VI-A, is applicable if Fi is a
known plane wave (which need not be a uniform plane wave)
or a superposition of known plane waves. The third approach,
exemplified in Sections VI-B and VI-C, applies to particular
forms of Fi .

VII. CONCLUSION

We have presented and used a new and specialized decom-
position of an arbitrary incident time-harmonic electromag-
netic field Fi into the ETHEFs FA, FB , FC and FD , which
are shown to be useful to study the response of an arbitrary
planar wire loop antenna used for reception.

We have obtained a formula (72) which gives the response
of the arbitrary planar wire loop antenna receiving Fi . This
formula is applicable to any incident field configuration and
valid at any frequency at which the thin wire approximation
applies. It separates the response of the antenna into three
parts: a surface integral of HA, a line integral of EA , and a
line integral of EB . This decomposition shows that, at any
frequency, only FA and FB excite the antenna.

It is possible, especially at low frequencies, to consider that
FA causes the intended response of the antenna, while FB

may cause an unwanted response. In (72) the effect FA is
subdivided into the surface integral of HA, which may be
viewed as the intended response of the antenna, and the line
integral of EA , which can be viewed as a correction term for
the gap width and the nonuniformity of the high-frequency
current distribution, since this line integral vanishes if the
current is uniform over the integration path.

This paper is directed at a planar wire loop antenna used as
a measuring antenna or as a direction finder. It was recognized
a long time ago that, if the antenna is not very small (e.g., a
circular loop antenna of diameter less than 0.01λ, if Fi is
a uniform plane wave [1]), the goal “measuring a magnetic
component of Fi”, used in the introduction section, is not
consistent with the actual capabilities of the loop antenna. This

paper teaches that, up to larger antenna sizes, a reasonable
purpose of the measurement is to obtain information about
FA, in the presence of unwanted effects of FB (and possibly
of FC or FD , since an actual antenna is different from the
theoretical planar wire antenna that we have assumed).

If we except calibration procedures, little information about
Fi is typically available before a measurement, so that the
question of computing FA and FB does not arise. In contrast,
in the context of a calibration operation during which the
planar wire loop antenna is used for reception, a computation
of FA and FB is possible and useful to analyze the calibration.

APPENDIX

Using (26)–(33), (79)–(85), and (88), we find that, in
the case of an incident plane wave, FA, FB , FC , and FD

everywhere in space are, if ki⊥ 6= 0, given by

EA = jvT E ki⊥ × uz
e− jki ·r + e− jkm ·r

2
(105)

HA =
vT E

2 jωµ
([(ki⊥ · ki⊥)uz − kizki⊥] e− jki ·r

+ [(ki⊥ · ki⊥)uz + kizki⊥] e− jkm ·r) (106)

EB =
iT M

2 jωε
([(ki⊥ · ki⊥)uz − kizki⊥] e− jki ·r

− [(ki⊥ · ki⊥)uz + kizki⊥] e− jkm ·r) (107)

HB = − j iTM ki⊥ × uz
e− jki ·r − e− jkm ·r

2
(108)

EC = jvT E ki⊥ × uz
e− jki ·r − e− jkm ·r

2
(109)

HC =
vT E

2 jωµ
([(ki⊥ · ki⊥)uz − kizki⊥] e− jki ·r

− [(ki⊥ · ki⊥)uz + kizki⊥] e− jkm ·r) (110)

ED =
iT M

2 jωε
([(ki⊥ · ki⊥)uz − kizki⊥] e− jki ·r

+ [(ki⊥ · ki⊥)uz + kizki⊥] e− jkm ·r) (111)

and

HD = − j iTM ki⊥ × uz
e− jki ·r + e− jkm ·r

2
(112)

whereas, if ki⊥ = 0, we obtain

EA = eT EM
e− jki ·r + e− jkm ·r

2
(113)

HA =
−kiz

ωµ
eT EM × uz

e− jki ·r − e− jkm ·r

2
(114)

EB = 0 and HB = 0 (115)

EC = eT EM
e− jki ·r − e− jkm ·r

2
(116)

HC =
−kiz

ωµ
eT EM × uz

e− jki ·r + e− jkm ·r

2
(117)

and

ED = 0 and HD = 0 . (118)
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