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Abstract — The paper establishes some properties of the matrix

of the beam cosines of the radiated power of a multiport antenna

array (MAA), and of the matrix of the beam cosines of the delivered

power, which concerns reception by the MAA. These matrices are

related to several quantities used in the literature. Though these

matrices are usually different and complex, the paper explains why

they may be equal and real, under certain assumptions. The paper

also proposes a definition and an investigation of the radiation

efficiency of the MAA.

Index Terms — Antenna theory, multiport antenna arrays,

MIMO radio communication.
I. INTRODUCTION

We consider a multiport antenna array (MAA) having m ports

numbered from 1 to m, where m  2. The MAA may for instance

only comprise m antennas, as shown in Fig. 1(A). It  may also

include a multiple-antenna-port and multiple-user-port

(MAPMUP) antenna tuner [1]-[6] and/or one or more feeders,

in addition to the antennas, as shown in Fig. 1(B). We assume

that the MAA is linear, but we do not assume reciprocity.

In analytic geometry, direction cosine refers to the cosine of

the angle between two vectors v1 and v2, that is the quantity

v1 · v2 /(||v1|| || v2||). By analogy, in this paper, some quantities in

the form < 1, 2>/(< 1, 1>< 2, 2>)1/2, where the brackets

denote an hermitian product involving an integration over all

directions in space, are called “beam cosines” [7, ch. 12].

In [6], we computed several beam cosines of an MAA

comprising a MAPMUP antenna tuner. However, we did not

explain some visible characteristics of their computed values,

and, to our best knowledge, the literature does not help to

understand them. This paper provides a new analysis of the

properties of the beam cosines, in § II and § III. The paper also

proposes a new definition of the radiation efficiency of the

MAA, and derives some of its attributes in § IV.

II. BEAM COSINES OF THE RADIATED POWER

We will use a spherical coordinate system having an origin

somewhere close to the MAA,  being the zenithal angle (i.e. the

angle with respect to the z-axis) and  being the azimuth angle.

In this § II, the MAA is used for emission. A linear multiport

source (LMS) has m ports numbered from 1 to m. Its admittance

matrix is denoted by YS . We do not assume that YS  is diagonal.

For any   {1,..., m}, port  of the MAA is coupled to port  of

the LMS.
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Fig. 1. An MAA consisting of m antennas in (A), and an MAA consisting of n

antennas, their feeders and a MAPMUP antenna tuner having n antenna ports and

m user ports (B). 

Let I0 be the m × 1 column vector of the rms short-circuit

currents at the ports of the LMS. For   {1,..., m}, let I0  be a

particular value of I0 having all its entries equal to zero ampere,

except the entry of the row , which takes on a specified value

I  . For   {1,..., m}, let E0  be the electric field radiated by the

MAA in a configuration where I0  is equal to I0  . Clearly, E0 

is proportional to I  . A plot of the average radiation intensity of

E0  in the far field, as a function of an angle, may be referred to

as a radiation pattern of port .

Let PR be the matrix of the self- and cross complex powers

radiated by the MAA over all values of  and , defined as

follows: for   {1,..., m} and   {1,..., m}, the entry PR   of PR

is given by

(1)P r d dRα β α

π

β

π

η
θ ϕ θ= ∗1

0

0

0

2

0

2

0

E E sin

where 0  376.7  is the intrinsic impedance of free space,

where E0  and E0  are regarded as column vectors, where the

star denotes the Hermitian adjoint, and where the integration is

carried out at a large distance r from the antennas lying in free

space. Clearly, PR   is proportional to I   and to I  , where the bar

indicates the complex conjugate.

For   {1,..., m}, since E0  is caused by the short-circuit

current I   of the port  of the LMS, we can consider that E0  is

the electric field produced by a single-port antenna made up of

the MAA and a linear passive multiport circuit (PMC) having m

ports numbered from 1 to m, of admittance matrix YS , each port

of the PMC being coupled to the port of same number of the

MAA, the port of the single-port antenna being port  of the
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MAA coupled to port  of the PMC, this single-port antenna

being coupled to a single-port current source delivering I  . Let

h0  be the effective complex length of this single-port antenna

in a direction ( , ), as defined in [8, § 5.2]. We have

(2)E h0 0 0
4

α
α

αη
π

=
−

j
I k e

r

jkr

where k is the wave number. Consequently, we have

(3)P
k I I

d dRα β

α β

α

π

β

πη

π
θ ϕ θ= ∗0

2

2 0

0

2

0

0
16

h h sin

Since, for any   {1,..., m} and any   {1,..., m}, by (1),

PR   is an hermitian product (or inner product) of the beams E0 

and E0  , we can, if PR    0 and  PR     0, define the beam

cosines of the radiated power, denoted by R   and given by

(4)ρ α β

α β

α α β β

R

R

R R

P

P P
=

The matrix ( R  ) is Hermitian. Note that | R  | is sometimes

referred to as “orthogonality coefficients”, for instance in [9].

Also, | R   |² is related to the “envelope correlation” considered

in [10] and to the “correlation coefficient” considered in [11, pp.

248-249]. We note that R   may exist only if I    0 and I    0,

that R   is proportional to I  /|I  | and to I  /|I  |, and that | R   |

and | R   |² are independent of I   and I  .

For an arbitrary I0 , let E0 be the electric field radiated by the

MAA and let Prad be the average power radiated by the MAA.

For any   {1,..., m}, we now use I   to denote the entry of the

row  of I0 . Prad  is given by

(5)P r d drad = ∗1

0

0

0

2

0

2

0
η

θ ϕ θ
ππ

E E sin

where E0 is regarded as a column vector, and where the

integration is carried out at a large distance r from the antennas

lying in free space. By superposition, we have

(6)E E h0 0

1

0

1

0
4

= =
=

−

=
∑ ∑α
α

α
α

αη
π

m jkr m

j
k e

r
I

so that

(7)P
k

I I d d
mm

rad =
==

∗∑∑
η

π
θ ϕ θα

β
β

α
α

π

β

π

0

2

2
11

0

0

2

0

0
16

h h sin

 Let Zrad be the matrix such that, for any   {1,..., m} and any

  {1,..., m}, the entry of the row   and the column  of Zrad ,

denoted by Zrad   , is given by

(8)Z
k

d dradα β α

π

β

π
η

π
θ ϕ θ= ∗0

2

2 0

0

2

0

0
16

h h sin

We see that Zrad is an Hermitian matrix, that it has the

dimensions of impedance, and that

(9)Prad rad= ∗
I Z I

0 0
2

Thus, Prad is an Hermitian quadratic form of the variable I0 ,

and Zrad  is the only matrix which satisfies (9) for any value of

I0  [12, § 3.2.4], [13, p. 174 Problem 6]. Moreover, since Prad  0

for any value of  I0 , it follows that Zrad is positive semidefinite.

If we use YA to denote the admittance matrix presented by the

MAA, we find that the average power received by the ports of

the MAA, denoted by PANT , is given by

(10)PANT pow= ∗I Z I0 0

where

(11)Z Y Y
Y Y

Y Ypow = +
+

+
− ∗

∗
−

A S
A A

A S

1 1

2

is an impedance matrix, and Hermitian. Since PANT  0 for any

value of  I0 , it follows that Zpow is positive semidefinite. In the

special case where YA is symmetric (reciprocal MAA), the ratio

( YA + YA*)/2 is the real part of YA .

It follows from the conservation of average power that we

have

(12)P P PANT rad loss= +

where Ploss  is the loss in the MAA. Using (9), (10) and (12), we

find that

(13)Ploss loss= ∗I Z I0 0

where

(14)Z Z Zloss pow rad= −

is an impedance matrix, which is Hermitian. We see that Ploss is

an Hermitian quadratic form of the variable I0 , so that Zloss  is the

only matrix which satisfies (13) for any value of  I0 . Since

Ploss  0 for any value of  I0 , Zloss is positive semidefinite.

For any   {1,..., m} and any   {1,..., m}, let Zpow    and

Zloss    be the entries of the row   and the column  of Zpow  and

Zloss , respectively. By (8) and (14), we have

(15)Z Z
k

d dpow lossα β α β α

π

β

π
η

π
θ ϕ θ− = ∗0

2

2 0

0

2

0

0
16

h h sin

Using (3), we obtain 

(16)P Z Z I IRα β α β α β α β= −pow loss

so that, using (4) we get

(17)ρ α β

α β α β

α α α α β β β β

α

α

β

β

R

Z Z

Z Z Z Z

I

I

I

I
=

−

− −

pow loss

pow loss pow loss

Formula (17) is similar to, but more general than formula (4)

of [9] about | R   |. The main application of this formula is in the

case where losses are negligible, for which

(18)ρ α β

α β

α α β β

α

α

β

β

R

Z

Z Z

I

I

I

I
≈

pow

pow pow

so that, in this case, using (11), the beam cosines can be derived

from YS and a measurement of YA . Formula (18) is similar to,

but more general than the result obtained in [10] about | R   |. It

entails that, if YS and YA are diagonal, then the beams are
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orthogonal (an old result [14]), since in this case, for   , we

have Zpow    = 0  so that R    0. The orthogonality conside-

red here is “over all directions in space”, as opposed to an ortho-

gonality “over the azimuth ” which does not seem to exist.

Beam cosines of the radiated power were computed in [6, § 6]

for an MAA composed of 4 antennas, 4 feeders and a lossy

MAPMUP antenna tuner having 4 antenna ports and 4 user

ports. At 800 MHz, radiation patterns of the ports of the MMA

are shown in Fig. 2, and the matrix of the beam cosines of the

radiated power is approximately given by

(19)ρ α βR ≈

−

−

−

−

1000 0 308 0 029 0 308

0 308 1000 0 308 0 029

0 029 0 308 1000 0 308

0 308 0 029 0 308 1000

. . . .

. . . .

. . . .

. . . .

We observe that this matrix is real. This is caused by the

particular configuration of the antennas, feeders and antenna

tuner, and by the choice of the relative phases of I1 , ... , Im . More

precisely, let us assume that the electrical and electromagnetic

properties of the antennas are invariant under the symmetries of

the point group denoted by Cm v  in the Schönflies notation [15,

ch. 2], each of these symmetries being associated with an

appropriate permutation of the ports of the MAA, and of the

internal connections of the MAA. The point group Cm v  contains

m rotations of angle 2 p/m about an axis, where p  {0,...,

m – 1}, and m reflections in planes containing the axis. Without

loss of generality, we may assume that this axis is the z-axis of

the spherical coordinate system. For given  and , the permu-

tation associated with one of the reflection planes transforms

port  into port , and port  into port . Without loss of

generality, we may assume that this reflection plane contains the

x-axis of the spherical coordinate system, so that a reflection by

this plane transforms a direction ( , ) into a direction ( , – ).

If we apply I0  , we may use h0  ( , ) and h0  ( , – ) to denote

the values of h0  in the directions ( , ) and ( , – ), respectively.

If we apply I0  , we may use h0  ( , ) and h0  ( , – ) to denote

the values of h0  in the directions ( , ) and ( , – ), respectively.

If YS  is invariant under the associated permutation of the ports,

we may conclude that h0  ( , ) =  h0  ( , – ), and also that

h0  ( , – ) = h0  ( , ). Thus, we have

(20)

h h h h

h h h h

h h

0 0 0 0

0 0 0 0

0 02

α β α β

α β β α

α β

θ ϕ θ ϕ θ ϕ θ ϕ

θ ϕ θ ϕ θ ϕ θ ϕ

θ ϕ θ ϕ

∗ ∗

∗ ∗

∗

+ − −

= +

=

, , , ,

, , , ,

Re , ,

where Re denotes the real part. Thus, using (3), if I   = I  , we

obtain

(21)

P
k I

d d

Rα β
α

α β

ππ

η

π

θ ϕ θ ϕ θ φ θ

=

× ∗

0

2 2

2

0 0

00

8

Re , , sinh h

so that PR   is real. Consequently, the matrix of the beam

cosines is also real.
3

Fig. 2. Radiation patterns of the ports of the MMA, at 800 MHz, in the plane

 = /2, versus the azimuth angle , each curve corresponding to an open-circuit

voltage of 2 V applied to one of the user ports of the antenna tuner.

This is what happens in [6, § 6], where the MAA is invariant

under the symmetries of the point group C4 v  and the associated

permutations. We note that the obscure explanation provided in

[16] after equation (35) does not work here because the radiation

patterns of the ports are not “identical patterns which are

circularly symmetric”, as shown in Fig. 2.

In a different configuration, the beam cosines of the radiated

power need not be real.

III. BEAM COSINES OF THE DELIVERED POWER

Let us now consider that the MAA is used for reception. A

linear multiport load (LML) has m ports numbered from 1 to m.

Its admittance matrix is YS .  For any   {1,..., m}, port  of the

MAA is coupled to port  of the LML. In a configuration where

a plane wave of electric field amplitude 1 V/m rms impinges on

the MAA from the direction ( , ), with a specified polarization

which depends on ( , ), for any   {1,..., m} let V   be the rms

voltage across port  of the MAA, and let V be the m × 1 column

vector of V1 to Vm . Let g0  be an arbitrary conductance. A plot of

the power |V  |²/g0 , as a function of an angle, may be referred to

as a reception pattern of port .

We assume a reciprocal MAA. We also assume a reciprocal

multiport load, so that YS  is symmetric. For   {1,..., m}, V   is

the open-circuit voltage of the single-port antenna defined above

in § II, in the discussion of E0  . Since h0  is the effective

complex length of this single-port antenna in the direction ( , ),

and using the assumed reciprocity, we have

(22)V iα α= ⋅h E0 0

where Ei 0 is the incident electric field at the origin of the

coordinate system [8, § 5.2]. Thus, if the polarization of the

incident field is matched to the polarization of the single-port

antenna, that is to say for Ei 0 equal to a complex constant times

the complex conjugate of h0   [8, § 5.2] [12, § 3.3.2], we get

(23)V i i iα α α α= = ⋅ ⋅h E h h E E0 0 0 0 0 0

so that the reception pattern of port  of the MAA clearly

corresponds to the directivity pattern of the single-port antenna,

hence to the radiation pattern of port  of the MAA.
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Let PD be the matrix of the self- and cross complex powers

delivered by the ports of the MAA, averaged over all directions

of arrival of a plane wave of electric field amplitude 1 V/m rms

impinging on the MAA with a specified polarization depending

on ( , ), defined as follows:

(24)P V ID d d= ∗1

4
0

2

0
π

θ ϕ θ
ππ

sin

where I is the m × 1 column vector of the rms current flowing

out of the m ports of  the MAA. In (24), V depends on ( , )

according to (22), so that I also depends on ( , ). We have

(25)P V V YD S d d= ∗ ∗1

4
0

2

0
π

θ ϕ θ
ππ

sin

Let Pdel be the average power delivered by the ports of the

MAA, averaged over all directions of arrival of a plane wave of

electric field amplitude 1 V/m rms impinging on the MAA with

the specified polarization. We have

(26)P d dS S
del = ∗

∗+1

4 2
0

2

0
π

θ ϕ θ
ππ

V
Y Y

V sin

In the special case where YS  = g0  1m  and where 1m  is the

identity matrix of size m by m, we get

(27)P V VD

g
d d= ∗0

0

0

2

0
4π

θ ϕ θ
ππ

sin

so that, for   {1,..., m} and   {1,..., m}, the entry PD   of PD

is given by

(28)P
g

V V d dDα β α

π

β

π

π
θ ϕ θ= 0

0

2

0
4

sin

Using (22), we obtain in this special case

(29)P
g

d dD i iα β α

π

β

π

π
θ ϕ θ= ⋅ ⋅0

0 0

0

2

0 0

0
4

h E h E sin

which is, in general, quite different from PR   given by (3). In

this  special case, we also have

(30)P
g

d d
Ddel = ∗ =0

0

2

0
4π

θ ϕ θ
ππ

V V Psin tr

where tr PD stands for the trace of PD .

Since, for any   {1,..., m} and any   {1,..., m}, by (28),

PD   is an hermitian product of the beams V  and V  , we can, in

the special case where YS  = g0  1m , define the beam cosines of

the delivered power, denoted by D   and given by

(31)ρ α β

α β

α α β β

D

D

D D

P

P P
=

The matrix ( D  ) is Hermitian. Its entries are remotely related

to the correlation coefficients discussed in [16, § III].

Beam cosines of the delivered power were computed in [6,

§ 6] for the same MAA and the same YS  = 20 mS × 14  as in the

computation of the beam cosines of the radiated power

mentioned above in § II. At 800 MHz, the matrix of the beam

cosines of the delivered power is approximately given by
4/
(32)ρ α βD ≈

−

−

−

−

1000 0 308 0 029 0 308

0 308 1000 0 308 0 029

0 029 0 308 1000 0 308

0 308 0 029 0 308 1000

. . . .

. . . .

. . . .

. . . .

We observe that the right-hand sides of (19) and (32) are

equal. To explain this, we note that each antenna had the same

vertical polarization, so that h0  was collinear to the unit vector

e  of the spherical coordinate, and the polarization of the incident

wave was matched because Ei 0 was in the form Ei 0 = Ei 0 e  , the

coordinate Ei 0 being real, so that (29) became

(33)P
g E

h h d dD

i

α β α

π

β

π

π
θ ϕ θ= 0 0

2

0

0

2

0

0
4

sin

where |Ei 0 | = 1 V/m, and where h0  and h0  are defined by h0  =

h0  e   and h0  =  h0  e  . Moreover, since I   = I  , (3) became

(34)P
k I

h h d dRα β
α

α

π

β

πη

π
θ ϕ θ= 0

2 2

2 0

0

2

0

0
16

sin

where |I  | = 40 mA. PR   being real for the reasons explained in

§ II, we have PR    = PR   . As a consequence, in the particular

configuration and for the assumptions used in [6, § 6], the matrix

of the beam cosines of the radiated power is equal to the matrix

of the beam cosines of the delivered power.

IV. RADIATION EFFICIENCY OF THE MAA

Some authors consider that the radiation efficiency of a port

of an MAA can be defined as the ratio of the total radiated

power to the maximum power available from a single port

source connected to the port, the one or more other ports of the

MAA being connected to a specified multiport load [17]. This is

not a good choice because:

# the radiation efficiency is originally defined, for a single port

antenna, as the ratio of the total radiated power to the net power

accepted by the single antenna port (that is, the power received

by the single antenna port, as opposed to a forward power

delivered by the source connected to it) [18, p. 30];

# a configuration in which a single port source is connected to

a port of an MAA, the one or more other ports of the MAA

being connected to a specified multiport load, does not represent

the intended use of a typical MAA.

We define the radiation efficiency of the MAA, denoted by e,

as the ratio of the total radiated power to the power received by

the ports of the MAA, that is

(35)e
P

P
= rad

ANT

where we use the notations of § II and assume that PANT  0 W.

We get

(36)e =
∗

∗

I Z I

I Z I

0 0

0 0

rad

pow

where we have assumed that the denominator is nonzero. In

(36), e is a function of the complex nonzero vector I0 . Thus, e
5



depends on the excitation. Moreover, e is real and e  0. Power

conservation entails e  1, so that we have 0  e  1.

Let A be a positive definite matrix. We know that [13, § 7.2]

there exists a unique positive definite matrix B such that B² = A.

The matrix B is referred to as the unique positive definite square

root of A, and is denoted by A1/2. It satisfies (A1/2)–1 = (A–1)1/2,

and we write A–1/2 = (A1/2)–1 = (A–1)1/2. Zpow is positive

semidefinite as explained above in § 4.1. Assuming that Zpow is

positive definite, we can introduce the new variable x =

Zpow
1/2 I0 . Since I0  = Zpow

–1/2 x, we have

(37)e =
∗

∗

≠

x M x

x x
x 0

where

(38)M Z Z Z= − −
pow rad pow

1 2 1 2

The matrix M is clearly Hermitian. Since e  0, M is positive

semidefinite. Let us use 1,..., m to denote the eigenvalues of M,

counting multiplicity, which are real, these eigenvalues being

labeled in ascending order. By the Rayleigh-Ritz theorem [13,

§ 4.2] and (37), we have

0 11
0 0

≤ = ≤ ≤ = ≤
≠

∗

∗ ≠

∗

∗
λ λmin max

x x

x M x

x x

x M x

x x
e m

(39)

Consequently, we have found that, if Zpow is positive definite,

1 and m are the minimum value and the maximum value of e,

respectively, when I0  takes on any possible nonzero value. At

this stage, to obtain 1 and m , we need to compute M using (38),

and then to compute its eigenvalues. The computation can be

simplified significantly if we observe that

(40)Z Z Z M Zrad pow pow pow

− −=1 1 2 1 2

so that M is similar to Zrad Zpow
–1. Thus, M and Zrad Zpow

–1 have

the same eigenvalues, counting multiplicity [13, § 1.3].

Consequently 1,..., m are the eigenvalues of Zrad Zpow
–1, counting

multiplicity, which are real, these eigenvalues being labeled in

ascending order.

In the case where I0  is known, a value of  e can be computed,

which lies in [ 1 , m ]. In the case where  I0  is not known, I0  can

be considered as a random complex vector. In this case, if we

had suitable information on the statistics of I0 , we could derive

the expectation < e > of e, which lies in [ 1 , m ]. Following a

different approach, we note that, according to the Courant-

Fischer “min-max theorem” [13, § 4.2] each eigenvalue of M is

a stationary value of e. We can define an “average” value of e,

denoted by eMP , as the average of these eigenvalues. Since

(41)λ i

i

m

=

−∑ = =
1

1tr trM Z Zrad pow

our average value eMP  is given by

(42)e
n

MP = −1 1
tr Z Zrad pow
5

We note that eMP  lies in [ 1 , m ], and that eMP can be regarded

as an expectation of e for an assumed statistics of I0 .

V. CONCLUSION

We have studied the matrix of the beam cosines of the

radiated power of an MAA and the matrix of the beam cosines

of the delivered power of the MAA. These matrices are complex

and they need not be equal. However, we have explained why,

in some special cases, they can be real and equal.

We have defined the radiation efficiency of an MAA, in a

manner that is consistent with the definition used for a single

antenna. The radiation efficiency depends on the excitation.

However, a  minimum value, a maximum value and an average

value of the radiation efficiency can be computed.
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