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ABSTRACT We investigate the transfer of power between two passive linear time-invariant multiports

having the same number of ports, in the harmonic steady state. One of the multiports is a generator in

a configuration A, or a load in a configuration B. The other multiport is a load in configuration A, or a

generator in configuration B. We define the power transfer ratios in these configurations. A new reciprocal

theorem on the power transfer ratios relates the extrema of the power transfer ratios obtained for all nonzero

excitations, in the two configurations. We define a power match figure, which is a new metric of the power

transfer ratios. It is equal to the return figure under appropriate assumptions. We also study some upper

bounds on the return figure, and show that, for arbitrary excitations, the absolute values of the entries of

the scattering matrix do not sufficiently characterize the power transfer ratios. We apply this theory to a

multiport antenna array and to a passive MIMO device.

INDEX TERMS Power transfer, power transfer ratio, return figure, scattering parameters.

I. INTRODUCTION
This article is a sequel of [1], which was a revised and

expanded version of the material presented in [2]–[3]. In what

follows, [1] is referred to as “Part 1”, and the numbering of

lemmas, theorems, etc, is a continuation of the numbering

used in Part 1. However, no prior knowledge of Part 1 is

necessary to read what follows.

Let us consider two linear time-invariant (LTI) circuits,

referred to as “configurations”, operating in the harmonic

steady state, at a given frequency. The two configurations are

shown in Fig. 1. In configuration A (CA), an LTI single-port

generator of internal impedance ZGA is connected to an LTI

single-port load of impedance ZGB . In configuration B (CB),

an LTI single-port generator of internal impedance ZGB is

connected to an LTI single-port load of impedance ZGA. Let

us use:

• PAAVG to denote the average power available from the

generator, in CA;

• PADG to denote the average power delivered by the

generator, in CA;

• PBAVG to denote the average power available from the

generator, in CB; and

• PBDG to denote the average power delivered by the

generator, in CB.

To ensure that PAAVG and PBAVG are defined, we assume

that the real parts of ZGA and ZGB are both positive. Assum-

FIGURE 1. The two configurations, CA and CB, considered in the introduction.

ing nonzero PAAVG and PBAVG, we can define the power

transfer ratio in CA, given by tA = PADG/PAAVG, and the

power transfer ratio in CB, given by tB = PBDG/PBAVG.

Power conservation entails 0 6 tA 6 1 and 0 6 tB 6 1.

Ignoring noise power contributions, we find

tA =
4Re(ZGA)Re(ZGB)

|ZGA + ZGB |2
= tB , (1)

where Re(z) denotes the real part of a complex number z.

Let z̄ denote the complex conjugate of a complex number z.

It follows from (1) that tA = tB = 1 if and only if ZGB =
ZGA, in line with the maximum power transfer theorem [4,

Sec. 7.4]–[5, Sec. 11.1]. It is shown in Appendix A that tA
and tB are the “power transmission coefficients” defined in

[6, Sec. III], in connection with the use of power waves to

prove tA = tB .
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This article is about the power transfer ratios relevant

to passive LTI multiports. Section II provides elementary

definitions and properties of the power transfer ratios tA and

tB applicable to a multiport generator and a multiport load.

Here, tA and tB are functions of the applicable excitations,

and they need not be equal. In Section III, a new theoretical

development allows us to extend (1) to multiports, in the form

of a reciprocal theorem on the power transfer ratios. This

development is discussed in Section IV. To obtain a suitable

metric of the power transfer ratios when the excitations are

not known, we use the new reciprocal theorem to define

the power match figure, in Section V. We show that, under

suitable assumptions, the power match figure is equal to the

return figure introduced and used in [7]–[11].

In Section VI, we show that the absolute values of the

entries of the scattering matrix do not determine the return

figure, and that it is nevertheless possible to compute three

upper bounds on the return figure, these upper bounds being

solely derived from the absolute values of the entries of the

scattering matrix.

Our results are applied to a multiport antenna array (MAA)

in Section VII. In this case, in contrast to the absolute

values of the entries of the scattering matrix, the return figure

characterizes the lowest possible power transfer ratios during

MIMO radio transmission. Other parameters that have been

introduced to characterize matching to a MAA [12]-[17] are

discussed in Section VII. Our results are also applied to a pas-

sive multiple-input-port and multiple-output-port (MIMO)

device, in Section VIII and Section IX.

II. THE POWER TRANSFER RATIOS
Let N be a positive integer. In what follows, when we say

that a first N -port device is connected to a second N -port

device, it is assumed that: the ports of the first N -port device

are numbered from 1 to N ; the ports of the second N -port

device are numbered from 1 to N ; and, for any integer p ∈
{1, . . . , N}, port p of the first N -port device is connected

to port p of the second N -port device (positive terminal to

positive terminal and negative terminal to negative terminal).

We consider two LTI circuits, referred to as “configura-

tions”, operating in the harmonic steady state, at a given

frequency fG. The two configurations are shown in Fig. 2. In

configuration A (CA), an LTI N -port generator, of internal

impedance matrix ZGA at fG, is connected to an LTI N -

port load of impedance matrix ZGB at fG. In configuration B

(CB), an LTI N -port generator, of internal impedance matrix

ZGB at fG, is connected to an LTI N -port load of impedance

matrix ZGA at fG. The matrices ZGB and ZGA are of size N
by N . Let us use:

• PAAVG to denote the average power available from the

N -port generator, in CA;

• PADG to denote the average power delivered by the N -

port generator, in CA;

• PBAVG to denote the average power available from the

N -port generator, in CB; and

• PBDG to denote the average power delivered by the N -

port generator, in CB.

FIGURE 2. The two configurations, CA and CB, considered in Section II.

We use M
∗ to denote the hermitian adjoint of an arbitrary

complex matrix M. Recall that, if M is square, the hermitian

part of M, denoted by H(M), is the matrix given by

H (M) =
M+M

∗

2
. (2)

We assume that H(ZGA) and H(ZGB) are positive def-

inite, so that they are invertible by [18, Sec. 7.1.7]. This

ensures that PAAVG and PBAVG are defined and given by

[19]:

PAAVG =
1

2
V

∗
OGA (ZGA + Z

∗
GA)

−1
VOGA (3)

and

PBAVG =
1

2
V

∗
OGB (ZGB + Z

∗
GB)

−1
VOGB , (4)

where VOGA is the column vector of the rms open-circuit

voltages of the N -port generator in CA, VOGB is the col-

umn vector of the rms open-circuit voltages of the N -port

generator in CB, and where we have ignored noise power

contributions.

We are going to use several times Lemma 1, which was

stated and proven in Part 1, section II. It tells us that, if M is

a square complex matrix such that H(M) is positive definite,

then M is invertible and H(M−1) is positive definite. By

Lemma 1, we can define YGA = Z
−1

GA and YGB = Z
−1

GB ,

the hermitian parts of YGA and YGB being both positive def-

inite. It also follows from Lemma 1 that, instead of assuming

that ZGA and ZGB exist and that H(ZGA) and H(ZGB) are

positive definite, we could equivalently have assumed that

YGA and YGB exist and that H(YGA) and H(YGB) are

positive definite. We have

PAAVG =
1

2
I
∗
SGA (YGA +Y

∗
GA)

−1
ISGA (5)

and

PBAVG =
1

2
I
∗
SGB (YGB +Y

∗
GB)

−1
ISGB , (6)

where ISGA is the column vector of the rms short-circuit

currents of the N -port generator in CA, ISGB is the col-

umn vector of the rms short-circuit currents of the N -port
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generator in CB, and where we have ignored noise power

contributions.

H(ZGA) and H(YGA) being positive definite, it follows

from (3) and (5) that PAAVG is nonzero if and only if ISGA

is nonzero, or, equivalently, if and only if VOGA is nonzero.

In this case, we can define the power transfer ratio in CA,

given by

tA =
PADG

PAAVG
. (7)

H(ZGB) and H(YGB) being positive definite, if follows

from (4) and (6) that PBAVG is nonzero if and only if ISGB

is nonzero, or, equivalently, if and only if VOGB is nonzero.

In this case, we can define the power transfer ratio in CB,

given by

tB =
PBDG

PBAVG
. (8)

The definition of the available power entails PADG 6

PAAVG and PBDG 6 PBAVG, so that

0 6 tA 6 1 (9)

and

0 6 tB 6 1 . (10)

Ignoring noise power contributions, we find by inspection

that

PADG = I
∗
SGAZ

∗
PAB

YGB +Y
∗
GB

2
ZPABISGA (11)

and

PBDG = I
∗
SGBZ

∗
PAB

YGA +Y
∗
GA

2
ZPABISGB , (12)

where

ZPAB = (YGA +YGB)
−1 (13)

is defined because H(YGA+YGB) = H(YGA)+H(YGB)
is positive definite by [18, Sec. 7.1.3], so that we can use

Lemma 1 again. Thus, the power transfer ratios in CA and

CB are given by

tA =
I
∗
SGAZ

∗
PAB(YGB +Y

∗
GB)ZPABISGA

I∗SGA(YGA +Y∗
GA)

−1ISGA
(14)

and

tB =
I
∗
SGBZ

∗
PAB(YGA +Y

∗
GA)ZPABISGB

I∗SGB(YGB +Y∗
GB)

−1ISGB
. (15)

Since (14) and (15) depend on ISGA and ISGB , respec-

tively, we have found that tA and tB are functions of the

applicable excitations, so that, if N > 2, they need not be

equal. Thus, (1) cannot apply to N > 2. Consequently, some

work is needed to generalize (1) to any positive N .

Let ||x||2 =
√
x∗x be the euclidian vector norm of an

arbitrary complex column vector x. We use SN to denote

the hypersphere of the unit vectors of C
N . For a fixed

ISGA/||ISGA||2, (14) shows that tA does not depend on

||ISGA||2. Thus, the set of the possible values of tA is

determined by YGA, YGB and the set of the possible values

of ISGA/||ISGA||2 for ISGA 6= 0, which is a subset of SN .

If we have no better information on the set of the possible

values of ISGA/||ISGA||2, we may have to assume that

ISGA/||ISGA||2 may lie anywhere in SN .

Likewise, for a fixed ISGB/||ISGB ||2, (15) shows that tB
does not depend on ||ISGB ||2. Thus, the set of the possible

values of tB is determined by YGA, YGB and the set of the

possible values of ISGB/||ISGB ||2 for ISGB 6= 0, which is

a subset of SN . If we have no better information on the set

of the possible values of ISGB/||ISGB ||2, we may have to

assume that ISGB/||ISGB ||2 may lie anywhere in SN .

III. THEOREMS ON THE POWER TRANSFER RATIOS
To prove the next theorem, we are going to need the following

result:

Lemma 3. Let A and B be two square complex matrices of

the same size, such that A+B is invertible. Let

K = (A+B)−1∗(A+A
∗)(A+B)−1(B+B

∗) (16)

and

L = (A+B)−1∗(B+B
∗)(A+B)−1(A+A

∗) . (17)

Then K and L have the same eigenvalues, counting multi-

plicities (i.e., they have the same characteristic polynomial).

Proof: See Appendix B

Let A be a positive semidefinite matrix. We know that

[18, Sec. 7.2.6] there exists a unique positive semidefinite

matrix B such that B
2 = A. The matrix B is referred

to as the unique positive semidefinite square root of A,

and is denoted by A
1/2. If A is invertible, we may write

A
−1/2 = (A1/2)−1 = (A−1)1/2. Since H(YGA) and

H(YGB) are positive definite, we can define the matrices

M1 = (YGA +Y
∗
GA)

1/2
Z

∗
PAB

× (YGB +Y
∗
GB)ZPAB(YGA +Y

∗
GA)

1/2 , (18)

and

M2 = (YGB +Y
∗
GB)

1/2
Z

∗
PAB

× (YGA +Y
∗
GA)ZPAB(YGB +Y

∗
GB)

1/2 , (19)

which are both of size N by N . M1 and M2 are clearly

hermitian, so that their eigenvalues are real. Note that the

eigenvalues of M1 and M2 are dimensionless numbers, since

M1 and M2 are dimensionless matrices.

Theorem 7. The matrices M1 and M2 defined by (18) and

(19) are positive semidefinite, so that their eigenvalues are

nonnegative. Let λ1max be the largest eigenvalue of M1

and λ1min the smallest eigenvalue of M1. Let λ2max be the

largest eigenvalue of M2 and λ2min the smallest eigenvalue

of M2. We have

0 6 λ1min 6 λ1max 6 1 , (20)

0 6 λ2min 6 λ2max 6 1 , (21)
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0 6 λ1minPAAVG 6 PADG 6 λ1maxPAAVG , (22)

and

0 6 λ2minPBAVG 6 PBDG 6 λ2maxPBAVG . (23)

Moreover,

• the equality PADG = λ1maxPAAVG is satisfied if ISGA

is the product of (YGA +Y
∗
GA)

1/2 and an eigenvector

of M1 associated with λ1max, measured in A1/2V1/2;

• the equality PADG = λ1minPAAVG is satisfied if ISGA

is the product of (YGA +Y
∗
GA)

1/2 and an eigenvector

of M1 associated with λ1min, measured in A1/2V1/2;

• the equality PBDG = λ2maxPBAVG is satisfied if ISGB

is the product of (YGB +Y
∗
GB)

1/2 and an eigenvector

of M2 associated with λ2max, measured in A1/2V1/2;

and

• the equality PBDG = λ2minPBAVG is satisfied if ISGB

is the product of (YGB +Y
∗
GB)

1/2 and an eigenvector

of M2 associated with λ2min, measured in A1/2V1/2.

Moreover, M1 and M2 have the same characteristic poly-

nomial, so that λ1max = λ2max and λ1min = λ2min.

Proof: H(YGB) being positive definite, M1 is positive

semidefinite by [18, Sec. 7.1.8], so that its eigenvalues are

nonnegative by [18, Sec. 7.1.4]. For CA, let us introduce the

new variable X1 = (YGA+Y
∗
GA)

−1/2
ISGA. Since ISGA =

(YGA +Y
∗
GA)

1/2
X1, it follows from (5), (11) and (18) that

PAAVG =
1

2
X

∗
1
X1 and PADG =

1

2
X

∗
1
M1X1 . (24)

By Rayleigh’s theorem [18, Sec. 4.2.2], we have

0 6 λ1minX
∗
1
X1 6 X

∗
1
M1X1 6 λ1maxX

∗
1
X1 , (25)

which, used with (24), proves (22). The other assertions

of Theorem 1 relating to M1 also result from Rayleigh’s

theorem and the definition of X1. The fact that λ1max 6 1
is a consequence of the fact that there exists a value of X1

for which PADG = λ1maxPAAVG, while the definition of

the available power entails PADG 6 PAAVG. The arguments

for the assertions of Theorem 1 relating to M2 and for

λ2max 6 1 are similar.

Since (YGA + Y
∗
GA)

1/2 and (YGB + Y
∗
GB)

1/2 are in-

vertible square matrices, it follows from [18, Sec. 1.3.22] that

M1 has the same eigenvalues, counting multiplicities, as

N1 = Z
∗
PAB(YGB +Y

∗
GB)ZPAB(YGA +Y

∗
GA) , (26)

and that M2 has the same eigenvalues, counting multiplici-

ties, as

N2 = Z
∗
PAB(YGA +Y

∗
GA)ZPAB(YGB +Y

∗
GB) , (27)

Applying Lemma 3 to YGA and YGB , and using (13), we

find that N1 and N2 have the same characteristic polynomial,

so that M1 and M2 have the same characteristic polynomial.

Thus, λ1max = λ2max and λ1min = λ2min.

Observation 5. We note that, if we only need the eigenvalues

of M1 or M2, the shortest computation is a direct computa-

tion of the eigenvalues of N1 or N2 defined by (26) and (27).

Using Theorem 7, we get the new Reciprocal theorem on

the power transfer ratios, which reads as follows.

Theorem 8. Ignoring noise power contributions, we assert

that:

(a) the set of the values of the power transfer ratio tA,

obtained for all nonzero VOGA ∈ C
N , or equivalently

for all nonzero ISGA ∈ C
N , has a least element referred

to as “minimum value”, and a greatest element referred

to as “maximum value”;

(b) the set of the values of the power transfer ratio tB ,

obtained for all nonzero VOGB ∈ C
N , or equivalently

for all nonzero ISGB ∈ C
N , has a least element referred

to as “minimum value”, and a greatest element referred

to as “maximum value”;

(c) the maximum value of tA and the maximum value of tB
are equal to λ1max = λ2max; and

(d) the minimum value of tA and the minimum value of tB
are equal to λ1min = λ2min.

The reciprocal theorem on the power transfer ratios ex-

tends (1) to multiport generators and multiport loads, in the

sense that it creates a relationship between tA and tB .

IV. SUPPLEMENT, EXAMPLE AND COMMENTS
A. USE OF AN EXTREMUM-SEEKING ALGORITHM

An extremum-seeking algorithm can be used to approximate

the maximum and minimum values defined in (a) and (b)

of Theorem 8, instead of computing them as eigenvalues

according to Theorem 7.

It follows from (14) that the power transfer ratio tA is

not modified if ISGA is multiplied by an arbitrary nonzero

complex number. Thus, to approximate the maximum and

minimum values of tA, an extremum-seeking algorithm may

posit ISGA ∈ SN , and further assume that one of the entries

of ISGA is real and nonnegative. By the same token, it

follows from (15) that, to approximate the maximum and

minimum values of tB , an extremum-seeking algorithm may

posit ISGB ∈ SN , and further assume that one of the entries

of ISGB is real and nonnegative. These observations lead to

the simple parametrizations already used in Section VI of

Part 1. For instance, for N = 2, the numerical algorithm can

use

ISGA =

(

sin θ1 exp jφ1

cos θ1

)

(28)

in CA, where θ1 ∈ [0, π/2] and φ1 ∈ [−π, π], and

ISGB =

(

sin θ2 exp jφ2

cos θ2

)

(29)

in CB, where θ2 ∈ [0, π/2] and φ2 ∈ [−π, π]. Thus, for N =
2, to estimate each maximum or minimum value defined in

(a) and (b) of Theorem 8, an extremum-seeking algorithm

may solve a problem having only 2 real unknowns each lying

in a bounded interval.

4 Copyright © 2021 by Excem



Excem Research Papers in Electronics and Electromagnetics, no. 3, April 2021

EXCEM 

B. EXAMPLE

As an example, let us assume that

ZGA =

(

51 + 39j 19 + 79j
27 + 56j 37 + 61j

)

Ω , (30)

and

ZGB =

(

32 + 87j 11 + 41j
23 + 37j 73 + 13j

)

Ω . (31)

ZGA and ZGB are not symmetric and have each a positive

definite hermitian part. The maximum and minimum values

defined in (a) and (b) of Theorem 8 have been computed

as eigenvalues according to Theorem 7, and independently

determined by an extremum-seeking algorithm using (28) or

(29). Both methods give exactly the same values, shown in

Table 1.

TABLE 1. Results for the example.

Quantity CA CB

maximum value of the power transfer ratio 0.864763 0.864763

minimum value of the power transfer ratio 0.215189 0.215189

Thus, ZGA and ZGB being not symmetric, we find that

the power transfer ratio equalities stated in (c) and (d) of

Theorem 8 are compatible with the computed values.

C. ON THE PROOF OF THEOREM 7

To prove Theorem 7 except its last assertion, we could have

utilized Theorem 3, which was stated and proven in Part 1.

To this end, we decide that the DUS considered in Part 1

is such that n = m = N , and consists only of wires

which, for any integer p ∈ {1, . . . ,m}, directly connect

port p of port set 1 of the DUS to port p of port set 2 of

the DUS (positive terminal to positive terminal and negative

terminal to negative terminal). We can of course consider

that this DUS is present in Fig. 2, port set 1 of the DUS

being connected to the “N -port generator (in CA) or load

(in CB)”, and port set 2 of the DUS being connected to

the “N -port load (in CA) or generator (in CB)”. This DUS

has neither an impedance matrix nor an admittance matrix.

By Theorem 1 (stated in Part 1), the parallel-augmented

multiport comprising this DUS and defined in Section IV of

Part 1 has an impedance matrix ZPAM , which is given by

ZPAM =

(

ZPAM11 ZPAM12

ZPAM21 ZPAM22

)

(32)

in block form, where ZPAM11 = ZPAM12 = ZPAM21 =
ZPAM22 = ZPAB . Since, using the notations of Section III

of Part 1, we have ZS1 = ZGA and ZS2 = ZGB , it follows

that (18) and (19) exactly correspond to equations (19) and

(20) of Part 1. This shows that Theorem 7, except its last

assertion, can be derived from Theorem 3.

If we introduce the additional assumption that ZGA and

ZGB are symmetric, then ZPAB is symmetric because the in-

verse of an invertible symmetric matrix is symmetric. In this

case, the last assertion of Theorem 7 (that is, λ1max = λ2max

and λ1min = λ2min) can also be derived from Theorem 3, so

that Theorem 7 is only a corollary of Theorem 3. However,

if we remove this unnecessary assumption, Theorem 3 says

nothing about this last assertion of Theorem 7, and Section

VI.B of Part 1 shows that this limitation is inherent to

Theorem 3. It is interesting to note that the matrices used

in the example of Section IV.B above are also used in the

example of Section VI.B of Part 1.

We can say that the proof of Theorem 7 provided in

Section III, which is based on Lemma 3, was needed to

remove an unnecessary assumption, the symmetry of ZGA

and ZGB .

D. ON THE PREMISES OF THEOREM 7 AND THEOREM 8

The only assumption of Theorem 7 and Theorem 8 is: ZGA

and ZGB exist and are such that H(ZGA) and H(ZGB) are

positive definite (or, equivalently: YGA and YGB exist and

are such that H(YGA) and H(YGB) are positive definite).

As said in Section II, this assumption ensures that PAAVG

and PBAVG are defined. However, if N > 2, it is possible to

design theoretical N -port generators for which an available

power can be defined, but which do not satisfy this assump-

tion. For instance, for N = 2, such a theoretical N -port

generator may comprise a single-port generator having an

internal impedance of 1.0Ω, this single-port generator being

directly connected to ports 1 and 2 of the N -port generator

(positive terminal to positive terminal and negative terminal

to negative terminal).

V. POWER MATCH FIGURE AND RETURN FIGURE
A. THE POWER MATCH FIGURE

Let us assume that YGA and YGB are known. If

ISGA/||ISGA||2 and ISGB/||ISGB ||2 are constant and

known, we can compute tA and tB using (14) and (15). In the

opposite case, we need a suitable metric of the power transfer

ratios. To obtain such a suitable metric, we consider the

worst-case situation, that is the lowest power transfer. Using

Theorem 8, let tMIN = λ1min = λ2min be the minimum

value of tA, which is equal to the minimum value of tB . The

power match figure is FM defined by

FM =
√
1− tMIN , (33)

Using (7) and (20), or (8) and (21), we get

0 6 FM 6 1 . (34)

FM expressed in decibels is FMdB = 20 logFM . By

Theorem 1, FM = 0 means that:

• for any excitation in CA, we have tA = 1 or equivalently

PADG = PAAVG; and

• for any excitation in CB, we have tB = 1 or equivalently

PBDG = PBAVG.

In fact, FM = 0 entails λ1min = λ1max = λ2min =
λ2max = 1, so that M1 = M2 = 1N , where 1N is the

identity matrix of size N by N , because M1 and M2 being

hermitian, they are diagonalizable.

FM = 1 does not lead to a result applicable to an arbitrary

excitation, since it means that:

Copyright © 2021 by Excem 5
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• in CA, there exists at least one nonzero VOGA or

nonzero ISGA such that tA = 0 or equivalently

PADG = 0; and

• in CB, there exists at least one nonzero VOGB or

nonzero ISGB such that tB = 0 or equivalently

PBDG = 0.

The use of FM as a design parameter is relevant to sit-

uations in which the location of ISGA/||ISGA||2 on SN is

not constant or is not known, or in which the location of

ISGB/||ISGB ||2 on SN is not constant or is not known.

B. THE RETURN FIGURE

Let r0 be a positive arbitrary reference resistance used to

define: a scattering matrix S = [Spq] of the N -port load used

in CA, at fG; a vector of the rms normalized incident voltage

waves in CA, denoted by a; and the resulting vector of the

rms normalized reflected voltage waves in CA, denoted by b

and given by b = Sa. Since r0 is real, a∗a = ||a||2
2

is the

incident power seen by the N ports of the N -port load used

in CA (for the arbitrary r0), and b
∗
b = ||b||2

2
is the reflected

power (for the arbitrary r0) [20, Ch. 24]. We may want to

minimize the ratio r(a) defined, for any a 6= 0, by

r(a) =
||b||2
||a||2

=

√

b
∗
b

a∗a
. (35)

For a fixed a/||a||2, we see that r(a) does not depend on

||a||2. Following [18, Section 8.1], we define |S| = [|Spq|].
This entrywise absolute value of S is a nonnegative matrix.

An integer q ∈ {1, . . . , N} being chosen, the knowledge of

|Spq| for every p ∈ {1, . . . , N} allows us to directly compute

r(a) if only port q is excited, that is, if only the q-th entry of

a is nonzero. Thus, the knowledge of |S| allows us to directly

compute r(a) for the N possible single-port excitations, but

not what happens when several entries of a are nonzero.

If the location of a/||a||2 on SN is not constant or not

known, a relevant metric for reflected waves is the worst

possible value of r(a), which is the return figure FR defined

in [7]–[11] as:

FR = |||S|||2 = max
a 6=0

||b||2
||a||2

= max
a 6=0

r(a) , (36)

where |||M|||2 denotes the spectral norm of a square matrix

M, and where we have used the fact that the spectral norm

is the matrix norm induced by the euclidian norm on vectors

[18, Section 5.6.6]. |||S|||2 is the greatest singular value of S,

which is the square root of the greatest eigenvalue of S∗
S,

and also the square root of the greatest eigenvalue of SS∗ by

[18, Section 1.3.22].

The N -port load used in CA being assumed passive, we

have

0 6 FR 6 1 , (37)

since, for any a, we have 0 6 r(a) 6 1. We observe that F 2

R

is the maximum value of the ratio of the reflected power to

the incident power for all nonzero excitations, because

F 2

R =

(

max
a 6=0

√

b
∗
b

a∗a

)2

= max
a 6=0

b
∗
b

a∗a
, (38)

FR expressed in decibels is FRdB = 20 logFR. It follows

from (38) that, for the reference resistance r0, FRdB is the

greatest value of the ratio, expressed in decibels, of the

reflected power to the incident power, for all nonzero excita-

tions. We can say that, with respect to the reference resistance

r0, the N -port load used in CA is exactly decoupled and

matched for any nonzero excitation if and only if FR = 0
or FRdB = −∞ dB.

It is well known that we always have [20, Ch. 24]:

PADG = a
∗
a− b

∗
b . (39)

Let us assume that ZGA = r01N . This means that the

ports of the N -port generator used in CA, or of the N -port

load used in CB, are uncoupled and present the same real

impedance r0. In this case,

PAAVG =
1

4r0
V

∗
OGAVOGA = a

∗
a , (40)

in which we have used (3). In this case, using (7), (35), (39)

and (40), we find that

tA =
a
∗
a− b

∗
b

a∗a
= 1− r(a)2 . (41)

Using (33) and the fact that a maximum value of r(a)
corresponds to a minimum value of tA, we may conclude

that ZGA = r01N entails

FR = FM , (42)

so that the return figure is related to the minimum values of

the return ratios tA and tB , by (33).

C. MATCHING METRICS FOR N-PORTS

FM and FR are instances of a matching metric, where

“matching metric” refers to one of more real quantities rep-

resenting how ZGB is harmonized with a wanted impedance

matrix ZW .

As said above, FM = 0 if and only if, for any excitation

in CA, we have PADG = PAAVG, corresponding to a

maximum power transfer. According to the maximum power

transfer theorem [19], the ideal value FM = 0 occurs if and

only if ZGB = Z
∗
GA. Thus, in the case of the metric FM , we

have ZW = Z
∗
GA. This metric has a profound meaning since,

according to (33), we have

min
ISGA 6=0

tA = min
ISGB 6=0

tB = 1− F 2

M . (43)

FR = 0 being equivalent to b = 0, the ideal value

FR = 0 occurs if and only if ZGB = r01N or equivalently

S = 0. Thus, in the case of the metric FR, we have

ZW = r01N . By (42), this metric inherits the properties of

FM if ZGA = r01N . However, unlike FM , FR is defined in

the more general case in which the device connected to the

N -port load used in CA is not LTI.

The most popular matching metric is the entries of |S|.
This metric also corresponds to ZW = r01N because the

ideal value |S| = 0 occurs if and only if ZGB = r01N .

Unlike FM and FR, |S| is not a scalar, so that it is not suitable

to compare two arbitrary N -ports. The connection between

|S| and FR will be thoroughly discussed in Section VI.
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D. THE POWER MATCH FIGURE AS A MATRIX NORM

The return figure FR was defined as a matrix norm in (36),

but we have used a different approach to define the power

match figure FM in (33). We want to find out if FM is also a

matrix norm.

If u ∈ C
N is an eigenvector of M1 associated with the

eigenvalue λ, it follows from Theorem 7 that λ ∈ [0, 1], so

that u is an eigenvector of 1N − M1 associated with the

eigenvalue 1 − λ, which lies in [0, 1]. Since 1N − M1 is

an hermitian matrix, it follows that it is positive semidefinite,

so that (1N − M1)
1/2 is defined. Likewise, if u ∈ C

N is

an eigenvector of M2 associated with the eigenvalue λ, then

(1N −M2)
1/2 is defined.

(1N − M1)
1/2 being positive semidefinite, its spectral

norm |||(1N − M1)
1/2|||2 is the square root of the great-

est eigenvalue of 1N − M1, this square root being equal

to
√
1− tMIN . Likewise, (1N − M2)

1/2 being positive

semidefinite, its spectral norm is equal to
√
1− tMIN .

Thus, it follows from (33) that

FM = |||(1N −M1)
1/2|||2 = |||(1N −M2)

1/2|||2 . (44)

It follows from (44) that FM is a matrix norm and an

induced norm, though (44) is not advisable for an actual

computation of FM . However, our derivation also shows that

FM =
√

ρ(1N −M1) =
√

ρ(1N −M2) , (45)

where ρ(M) denotes the spectral radius of an arbitrary square

matrix M, that is the largest absolute value of its eigenvalues.

For an actual computation of FM , (45) and (33) are equally

convenient.

VI. MORE PROPERTIES OF THE RETURN FIGURE
We now want to study the relationships between |S| and the

return figure FR. Let us first consider three examples. In

example 1, we have

S =

(

0.50 0.25
0.25 0.50

)

, (46)

for which FR = 0.750 and FRdB ≃ −2.499 dB. In example

2, we have

S =

(

0.50 0.25j
0.25j 0.50

)

, (47)

for which FR ≃ 0.559 and FRdB ≃ −5.052 dB. In example

3, we have

S =

(

0.50 0.25
0.25 0.50j

)

, (48)

for which FR ≃ 0.699 and FRdB ≃ −3.104 dB. Since (46)-

(48) correspond to the same |S|, we have proved that FR

cannot be derived from the sole knowledge of |S|.
To explore how |S| can be utilized to obtain useful upper

bounds on FR, we can introduce A = [Apq] = S
∗
S and

B = [Bpq] = |S|T |S|, where the superscript T denotes the

transpose. For any p and q lying in {1, . . . , N}, we have

|Apq| =
∣

∣

∣

∣

∣

N
∑

k=1

S̄kpSkq

∣

∣

∣

∣

∣

6

N
∑

k=1

|Skp| |Skq| = Bpq (49)

and

App =
N
∑

k=1

|Skp|2 = Bpp . (50)

Let M = [Mpq] be a complex matrix of size N by N . By

[18, Section 5.6.P23], we have

|||M|||2 6 ||M||2 6
√
N |||M|||2 , (51)

where

||M||2 =

√

√

√

√

N
∑

p=1

N
∑

q=1

|Mpq|2 (52)

is the Frobenius norm of the matrix M. It follows from (36),

(50) and (51) that we can define mE such that

FR 6 mE = ||S||2 =
√

tr(B) . (53)

Thus, mE is an upper bound on FR, and such that mE is

only determined by B, and therefore only determined by |S|.
It follows from (37) that (53) is useful only if mE < 1.

It follows from (36) that F 2

R = ρ(A). The theory of

Geršgorin disks allows us to write

ρ(A) 6 max
p

N
∑

q=1

|Apq| = max
q

N
∑

p=1

|Apq| , (54)

where we have used the fact that A is hermitian and [18,

Section 6.1.5]. Using (49) and (54), we find that we can

define mG such that

FR 6 mG =

√

√

√

√max
p

N
∑

q=1

Bpq . (55)

This information on FR is only derived from |S|. It follows

from (37) that (55) is useful only if mG < 1.

It is possible to obtain an upper bound which is only based

on |S|, and closer to FR than mE and mG. Using the fact that

A is hermitian, (49) and Fan’s theorem [18, Section 8.2.9],

we obtain

ρ(A) ∈
N
⋃

q=1

{x ∈ R : |x−Aqq| 6 ρ(B)−Bqq} , (56)

where the colon means “such that”. Using (50), we get

ρ(A) ∈
N
⋃

q=1

{x ∈ R : −ρ(B) + 2Aqq 6 x 6 ρ(B)} . (57)

Thus, ρ(A) 6 ρ(B) and we can define mF such that

FR 6 mF =
√

ρ(B) . (58)

If we know |S| and do not make any other assumption, it

is possible that S = |S|, in which case A = B and FR =
mF . It follows that mF is the least (and the best) of all upper

bounds on FR which are only based on |S|. Thus, the upper

bounds mE , mG and mF on FR are only based on |S| and

satisfy

mF 6 mG and mF 6 mE . (59)

It follows from (37) that (58) is useful only if ρ(B) < 1.
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FIGURE 3. The two configurations, CA and CB, considered in Section VII.A for
a single antenna.

In examples 1 to 3 defined above, (53) gives FR 6 mE ≃
0.791, whereas (55) and (58) give FR 6 mF = mG =
0.750, which may be compared to FR = 0.750 in example 1,

FR ≃ 0.559 in example 2 and FR ≃ 0.699 in example 3. To

prove that (55) and (58) do not always give the same result,

we may consider the two following examples. In example 4,

we have

S =

(

0.50 0.25
0.25 0.40

)

, (60)

for which FR ≃ 0.705. In example 5, we have

S =

(

0.50 0.25j
0.25j 0.40

)

, (61)

for which FR ≃ 0.565. For examples 4 and 5, (53) gives

FR 6 mE ≃ 0.731, (55) gives FR 6 mG ≃ 0.733 and (58)

gives FR 6 mF ≃ 0.705.

In this Section VI, we have: shown that |S| does not

determine FR; computed three upper bounds mE , mG and

mF on FR, these upper bounds being solely derived from

the knowledge of |S|; shown that these upper bounds are

distinct; and shown that mF is the least of all possible upper

bounds solely derived from the knowledge of |S|. These

results clarify the relationship between |S| and FR.

VII. APPLICATION TO A MAA
A. GENERAL CONSIDERATIONS

Fig. 3 shows two configurations in which the device drawn on

the right in Fig. 1 is an LTI passive antenna operating in the

harmonic steady state, at a given frequency. Here, “passive

antenna” is used in the meaning of antenna engineering, the

passive antenna, if regarded as a single-port circuit element

of circuit theory, being passive in the context of emission,

but active in the context of reception. Let ZA denote the

impedance of the antenna. In configuration A (CA) used for

emission, the port of the antenna is connected to an LTI

generator of internal impedance ZG, and there is no incident

field. In configuration B (CB) used for reception, the port of

the antenna is connected to an LTI load of impedance ZG,

and the antenna is excited by an incident field. Let us use:

• PAAVG to denote the average power available from the

generator, in CA (emission);

• PARPA to denote the average power received by the port

of the antenna, in CA (emission);

• PBAV A to denote the average power available from the

port of the antenna, in CB (reception); and

• PBDPA to denote the average power delivered by the

port of the antenna, in CB (reception).

FIGURE 4. The two configurations, CA and CB, considered in Section VII.A for
a multiport antenna array (MAA).

What was said in Section I is directly applicable to the

configurations shown in Fig. 3, if we use ZG = ZGA ;

ZA = ZGB ; PARPA = PADG ; PBAV A = PBAVG and

PBDPA = PBDG . It follows that tA = PARPA/PAAVG

and tB = PBDPA/PBAV A .

Fig. 4 shows two configurations in which the device drawn

on the right in Fig. 2 is an LTI and passive multiport antenna

array (MAA), where “passive” is again used in the meaning

of antenna engineering. The MAA has N ports, and is

operating in the harmonic steady state, at the given frequency

fG. The MAA has an impedance matrix ZA at fG. In config-

uration A (CA) used for emission, the MAA is connected to

an LTI N -port generator of internal impedance matrix ZG at

fG, and there is no incident field. In configuration B (CB)

used for reception, the MAA is connected to an LTI N -port

load of impedance matrix ZG at fG, and the MAA is excited

by an incident field. ZA and ZG are of size N by N . Let us

use:

• PAAVG to denote the average power available from the

N -port generator, in CA (emission);

• PARPA to denote the average power received by the

ports of the MAA, in CA (emission);

• PBAV A to denote the average power available from the

ports of the MAA, in CB (reception); and

• PBDPA to denote the average power delivered by the

ports of the MAA, in CB (reception).

We assume that H(ZA) and H(ZG) are positive definite

so that, by Lemma 1, we can define YG = Z
−1

G and

YA = Z
−1

A , the hermitian parts of YG and YA being

both positive definite. It also follows from Lemma 1 that,

instead of assuming that ZG and ZA exist and that H(ZG)
and H(ZA) are positive definite, we could equivalently have

assumed that YG and YA exist and that H(YG) and H(YA)
are positive definite.

To apply what was said in sections II to VI to the con-

figurations shown in Fig. 4, we need to use ZG = ZGA ;

ZA = ZGB ; YG = YGA ; YA = YGB ; PARPA = PADG ;

PBAV A = PBAVG and PBDPA = PBDG . It follows that

tA = PARPA/PAAVG and tB = PBDPA/PBAV A .
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Let us use ISG to denote the column vector of the rms

short-circuit currents of the N -port generator in CA (emis-

sion). It follows from what was said in Section II that the set

of the possible values of tA is determined by YA, YG and

the set of the possible values of ISG/||ISG||2 for ISG 6= 0,

which is a subset of SN . If CA corresponds to an emission for

MIMO radio transmission with rank-N spatial multiplexing,

linearly independent signals are applied to the N ports of the

MAA. Each of these signals is digitally modulated in such

a way that it presents a suitable spectral efficiency, typically

using pulse shaping and a multicarrier modulation such as

OFDM [21]–[23]. In this case, it is reasonable to assume that,

at a given time, ISG/||ISG||2 may lie anywhere in SN .

Let us use ISA to denote the column vector of the rms

short-circuit currents of the MAA in CB (reception). It fol-

lows from what was said in Section II that the set of the

possible values of tB is determined by YA, YG and the set

of the possible values of ISA/||ISA||2 for ISA 6= 0, which is

a subset of SN . If CB corresponds to a reception of a signal

intended for MIMO radio transmission with rank-N spatial

multiplexing, and if the rank of the channel matrix is N , then

linearly independent signals are delivered by the N ports of

the MAA [24, Ch. 7]. In this case, if the channel matrix is

well-conditioned, it may be reasonable to assume that, at a

given time, ISA/||ISA||2 may lie anywhere in SN .

B. MATCHING METRICS FOR AN N-PORT AND A MAA

In Section V.C and Section VI, we have already discussed

the merits of FM , FR and the entries of |S| as matching

metrics. The matching metric most commonly used by MAA

designers is the entries of |S|. However, other matching

metrics or parameters are also used by MAA designers.

The active reflection coefficients (ARCs), denoted by Γi
a

where i ∈ {1, . . . , N}, and the total active reflection coef-

ficient (TARC), denoted by Γt
a, have been introduced some

years ago [12]–[13]. Being functions of a, they are not

matching metrics as defined in Section V.C. According to the

original definition of the TARC, we get Γt
a = r(a) in the

special case of a lossless antenna [12]–[13]. Other authors

use a different definition, according to which Γt
a = r(a)

irrespective of antenna losses [14]–[15, Sec. 2.3.1].

The normalized total multiport reflectance defined and

used in [16]–[17] is given by

Γtot =

√

√

√

√

1

N

N
∑

p=1

N
∑

q=1

|Spq|2 =
1√
N

||S||2 . (62)

By (36) and (51), we find

0 6
FR√
N

6 Γtot 6 FR 6 1 . (63)

Γtot is derived from |S|. It corresponds to a wanted

impedance matrix ZW equal to r01N because the ideal value

Γtot = 0 is obtained if and only if ZA = r01N . Since it is

a scalar, Γtot can be directly used to compare two N -ports

MAAs. However, since the Frobenius norm is not an induced

norm, Γtot does not have a direct physical meaning, like the

ones revealed by (36) or (38) for FR, or by (43) for FM .

FIGURE 5. The return figure FR and, for p ∈ {1, . . . , 8}, the absolute value
of the entry Spp of S, computed for the 8-port MAA considered in Section VII.

FIGURE 6. The return figure FR and the upper bounds mE , mG and mF ,
computed for the 8-port MAA considered in Section VII.

C. EXAMPLE

The article [25] presents a new self-decoupled 2-port antenna

pair with shared radiator for 5G smartphones, and impressive

results for an 8-port MAA comprising four 2-port antenna

pairs, intended for the 3.3 GHz to 4.2 GHz frequency band. It

includes many plots of simulated and measured |Spq|, where

Spq is an entry of the scattering matrix S of the 8-port MAA,

and where p and q lie in {1, . . . , 8}.

The authors of [25] kindly provided the simulated S-

parameters for their 8-port MAA, computed by utilizing the

program HFSS. We used these S-parameters to compute the

return figure FR, shown with |S1 1| to |S8 8| in Fig. 5, for

r0 = 50Ω. FR was computed as |||S|||2 according to (36).

We also computed FM using (33) for ZGA = r01N , and

found that, within the computation accuracy, FM is equal

to FR, in line with (42). Recall that, by (42) and (43), FR

is related to the minimum values of tA and tB obtained for

ZGA = r01N , so that FR is meaningful for emission and for

reception. In Fig. 5, each |Sp p| is much less than FR.

We also computed the upper bounds mE , mG and mF ,

shown in Fig. 6 with FR, for r0 = 50Ω. We observe

that mF is always less than mE and mG, but nevertheless

substantially greater than FR. Since mF is the least of all

Copyright © 2021 by Excem 9
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FIGURE 7. The two configurations, CA and CB, considered in Section VIII.

upper bounds only based on |S|, this indicates that |S| does

not allow an accurate evaluation of FR. At some frequencies,

mF is greater than 0 dB, in which case we must conclude that

|S| conveys no information at all on FR.

In circumstances where the locations of ISG/||ISG||2
and/or ISA/||ISA||2 on SN are not constant or not known,

such as during MIMO radio transmission with spatial multi-

plexing, FR characterizes the lowest possible power transfer

ratios. Fig. 5 and Fig. 6 show that using the |Spp|, or any

upper bound on FR only based on |S|, is not satisfactory.

VIII. MORE THEORY FOR PASSIVE MIMO DEVICES
We consider two LTI circuits, referred to as “configurations”,

operating in the harmonic steady state, at the given frequency.

The two configurations are shown in Fig. 7, which is identical

to Fig. 7 of Part 1. All explanations concerning Fig. 7 of

Part 1 are applicable to the configurations considered here.

In Fig. 7, the device under study (DUS) is a MIMO device in

the sense that: in configuration A (CA), the m ports of port

set 1 are input ports and the n ports of port set 2 are output

ports; and, in configuration B (CB), the n ports of port set 2

are input ports and the m ports of port set 1 are output ports.

As in Part 1, we assume that the DUS is passive; we use

ZS1 to denote the impedance matrix of the m-port load or

generator shown on the left in Fig. 7, H(ZS1) being positive

definite; and we use ZS2 to denote the impedance matrix of

the n-port load or generator shown on the right in Fig. 7,

H(ZS2) being positive definite.

In addition, we assume that:

• if the DUS, the n-port load or generator shown on

the right in Fig. 7 and the wires connecting them are

regarded as an m-port load or generator (whose ports

are the ports of port set 1), it has an impedance matrix

denoted by ZT2, and H(ZT2) is positive definite; and

• if the DUS, the m-port load or generator shown on the

left in Fig. 7 and the wires connecting them are regarded

as an n-port load or generator (whose ports are the ports

of port set 2), it has an impedance matrix denoted by

ZT1, and H(ZT1) is positive definite.

We can utilize all results of sections II to V twice:

• a first time at port set 1, in which case we make use

of ZGA = ZS1 and ZGB = ZT2 to define tA1 as

tA given by (14), tB1 as tB given by (15), tMAX1 as

the maximum value common to tA and tB according

to (c) of Theorem 8, and tMIN1 as the minimum value

common to tA and tB according to (d) of Theorem 8;

and

• a second time at port set 2, in which case we make use

of ZGA = ZT1 and ZGB = ZS2, to define tA2 as

tA given by (14), tB2 as tB given by (15), tMAX2 as

the maximum value common to tA and tB according

to (c) of Theorem 8, and tMIN2 as the minimum value

common to tA and tB according to (d) of Theorem 8.

Let us use:

• PAAVG1 to denote the average power available from the

m-port generator connected to port set 1, in CA;

• PARP1 to denote the average power received by port set

1 in CA (or, equivalently, the average power delivered

by the m-port generator connected to port set 1 in CA);

• PAAV P2 to denote the average power available from

port set 2, in CA;

• PADP2 to denote the average power delivered by port

set 2, in CA;

• PBAVG2 to denote the average power available from the

n-port generator connected to port set 2, in CB;

• PBRP2 to denote the average power received by port set

2 in CB (or, equivalently, the average power delivered

by the n-port generator connected to port set 2 in CB);

• PBAV P1 to denote the average power available from

port set 1, in CB; and

• PBDP1 to denote the average power delivered by port

set 1, in CB.

We have

tA1 =
PARP1

PAAVG1

, (64)

tA2 =
PADP2

PAAV P2

, (65)

tB1 =
PBDP1

PBAV P1

, (66)

tB2 =
PBRP2

PBAVG2

. (67)

The DUS being passive, the transducer power gain in CA

is less than or equal to tA1, and the transducer power gain

in CB is less than or equal to tB2. If the DUS is lossless,

then the transducer power gain in CA is equal to tA1, and the

transducer power gain in CB is equal to tB2.

Theorem 9. Let the DUS be a lossless and reciprocal device,

and let both loads be reciprocal devices. We have

tMAX1 = tMAX2 . (68)

In the case where m = n, we also have

tMIN1 = tMIN2 . (69)
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Proof: Let us assume that we are in CA. The DUS being

passive and lossless, tA1 is the transducer power gain in

CA, as defined in Theorem 4, which was stated and proven

in Part 1. A comparison of Theorem 8 with Theorem 4

shows that tMAX1 and tMIN1 are the maximum value of the

transducer power gain in CA and the minimum value of the

transducer power gain in CA, respectively.

Let us now assume that we are in CB. The DUS being

passive and lossless, tB2 is the transducer power gain in CB,

as defined in Theorem 4. A comparison of Theorem 8 with

Theorem 4 shows that tMAX2 and tMIN2 are the maximum

value of the transducer power gain in CB and the minimum

value of the transducer power gain in CB, respectively.

Based on the foregoing, the conclusion of Theorem 9

follows from (c) and (d) of Theorem 4.

Theorem 10. Let the DUS be lossless. If the impedance

matrix ZPAM12 defined in Section IV of Part 1 is of rank

m, then

tMAX2 > tMAX1 (70)

and

tMIN2 6 tMIN1 . (71)

If rankZPAM12 < n, then

tMIN2 = 0 . (72)

If the impedance matrix ZPAM21 defined in Section IV of

Part 1 is of rank n, then

tMAX1 > tMAX2 (73)

and

tMIN1 6 tMIN2 . (74)

If rankZPAM21 < m, then

tMIN1 = 0 . (75)

Proof: According to sections II and IV of Part 1, we know

that the matrix ZPAM is defined, and that it can be written

in block form as in (32), the submatrices ZPAM11 of size m
by m, ZPAM12 of size m by n, ZPAM21 of size n by m and

ZPAM22 of size n by n being determined by the DUS, ZS1

and ZS2.

By Lemma 1, H(ZT1) being positive definite, ZT1 is in-

vertible and H(Z−1

T1
) is positive definite. Likewise, H(ZS2)

being positive definite, ZS2 is invertible and H(Z−1

S2
) is

positive definite. Thus, H(Z−1

T1
+ Z

−1

S2
) is positive definite,

so that Z−1

T1
+ Z

−1

S2
is invertible and

ZPAM22 = (Z−1

T1
+ Z

−1

S2
)−1 (76)

We use IS1 to denote the column vector of the rms short-

circuit currents of the m-port generator connected to port set

1. In CA, if the DUS, the m-port generator shown on the left

in Fig. 7 and the wires connecting them are regarded as an

n-port generator, its impedance matrix is ZT1 as said above,

and we use IT1 to denote the column vector of its rms short-

circuit currents. By inspection and analysis, we find

IT1 = Z
−1

PAM22
ZPAM21IS1 , (77)

in which we have used the fact that, by (76), ZPAM22 is

invertible, and the fact that ZS2 is invertible.

In CA, for any IS1, we have PADP2 = PARP1 and

PAAV P2 6 PAAVG1, because the DUS is passive and

lossless. ZT2 being determined only by the DUS and by

ZS2, we can assume that we have chosen ZS1 in such a

way that ZS1 = Z
∗
T2

. In this case, any excitation IS1 is

such that PARP1 = PAAVG1. If we additionally assume

that rankZPAM21 = n, then, for any arbitrary nonzero

IT1 ∈ C
N , there exists at least one nonzero excitation

IS1 which satisfies (77). For such an excitation, we have

PADP2 = PAAVG1, so that PAAV P2 > PAAVG1. Thus,

PAAV P2 = PAAVG1 because we already know that we have

PAAV P2 6 PAAVG1. Since we have found that, for any

arbitrary nonzero IT1 ∈ C
N , we have PADP2 = PAAV P2, it

follows from Remark 1 of [19] that ZS2 = Z
∗
T1

.

Let us no longer assume that ZS1 = Z
∗
T2

. We have just

shown that, if rankZPAM21 = n, then

(ZS1 = Z
∗
T2

) =⇒ (ZS2 = Z
∗
T1

) . (78)

Using the same approach in CB, we can prove that, if

rankZPAM12 = m, then

(ZS2 = Z
∗
T1

) =⇒ (ZS1 = Z
∗
T2

) . (79)

Let us assume that rankZPAM12 = m. For any excitation

IS1 ∈ C
N in CA, the circumstance ZS2 = Z

∗
T1

entails:

PADP2 = PAAV P2; and PARP1 = PAAVG1 by (79). It

follows from PADP2 = PARP1 that, for said excitation,

PAAV P2 = PAAVG1. It must be stressed that this result

is independent of the value of ZS2, because ZS2 has no

effect on PAAVG1 and no effect on PAAV P2. Thus, for any

value of ZS2 and any excitation IS1 ∈ C
N in CA, we have

tA1 = tA2 because PADP2 = PARP1. Consequently, we

obtain tMAX2 > tMAX1 and tMIN2 6 tMIN1.

If, instead of assuming rankZPAM12 = m, we assume

that rankZPAM21 = n and consider CB, we likewise obtain

tMAX1 > tMAX2 and tMIN1 6 tMIN2.

In CA, if we assume that rankZPAM21 < m, it follows

from (77) and the rank-nullity theorem that there exists a

nonzero excitation IS1 such that IT1 = 0. In this case, we

have PADP2 = PARP1 = 0, so that tA1 = tA2 = 0. It

follows that tMIN1 = 0, but we cannot conclude anything

about tMIN2.

In CB, if we assume rankZPAM12 < n, we likewise

obtain tMIN2 = 0.

Theorem 9 and Theorem 10 are new. However, (78) and

(79) are not new, since several proofs of equivalent state-

ments were published, for instance in Section III of [26] using

scattering matrices, and in the Appendix of [27] using the

admittance matrix of the DUS. The proof of (78) and (79)

shown above is new, and particularly simple and concise.
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Theorem 11. We assume that the DUS is lossless, and n =
m. Let FM1 =

√
1− tMIN1 be the power match figure at

port set 1, and FM2 =
√
1− tMIN2 be the power match

figure at port set 2. We have

FM1 = FM2 . (80)

If rankZPAM12 < m = n or rankZPAM21 < m = n,

then

FM1 = FM2 = 1 . (81)

Proof: If rankZPAM12 = rankZPAM21 = m = n,

the result FM1 = FM2 follows from (71) and (74). If

rankZPAM12 < m = n and rankZPAM21 < m = n,

the result FM1 = FM2 = 1 follows from (72) and (75).

If rankZPAM21 < rankZPAM12 = m = n, we have

tMIN1 = 0 by (75) and tMIN2 6 tMIN1 by (71), so that

tMIN2 = tMIN1 = 0 and FM1 = FM2 = 1
If rankZPAM12 < rankZPAM21 = m = n, we have

tMIN2 = 0 by (72) and tMIN1 6 tMIN2 by (74), so that

tMIN2 = tMIN1 = 0 and FM1 = FM2 = 1.

IX. EXAMPLES INVOLVING PASSIVE MIMO DEVICES
A. FIRST EXAMPLE

In a first example such that m = n = 2, ZS1 is equal to ZGA

given by (30) and ZS2 is equal to ZGB given by (31). We

assume that the DUS has an impedance matrix given by

Z =








25j 31 + 11j 31 + 5j 17 + 40j
−31 + 11j 35j 3 + 62j 40 + 17j
−31 + 5j −3 + 62j 41j 21 + 49j
−17 + 40j −40 + 17j −21 + 49j 21j









Ω .

(82)

ZS1, ZS2 and Z are not symmetric. ZS1 and ZS2 have

each a positive definite hermitian part. We have H(Z) = 0
because Z is the impedance matrix of a lossless DUT.

We have computed ZPAM and found that rankZPAM12 =
rankZPAM21 = 2. FM1 and FM2 have been computed by

utilizing Theorem 7 and (33), at port set 1 and at port set

2. The results are FM1 ≃ 0.964873 and FM2 ≃ 0.964873.

These results are compatible with Theorem 11.

B. SECOND EXAMPLE

In a second example such that m = n = 2, ZS1 and ZS2 are

the same as in the first example. We assume that the DUS has

an impedance matrix given by

Z =








25j 31 + 11j 31 + 5j 62 + 10j
−31 + 11j 35j 3 + 49j 6 + 98j
−31 + 5j −3 + 49j 41j 21 + 49j
−62 + 10j −6 + 98j −21 + 49j 21j









Ω .

(83)

Z is not symmetric, and H(Z) = 0 because Z is the

impedance matrix of a lossless DUT.

We have computed ZPAM and found that rankZPAM12 =
rankZPAM21 = 1. FM1 and FM2 have been computed by

utilizing Theorem 7 and (33), at port set 1 and at port set

2. The results are FM1 ≃ 1.000000 and FM2 ≃ 1.000000.

These results are compatible with Theorem 11.

C. THIRD EXAMPLE

In a third example such that m = n = 2, ZS1 and ZS2 are

the same as in the first example. We assume that the DUS has

an impedance matrix given by

Z =








25j 31 + 11j 0 0
−31 + 11j 35j 0 0

0 0 41j 21 + 49j
0 0 −21 + 49j 21j









Ω .

(84)

Z is not symmetric, and H(Z) = 0 because Z is the

impedance matrix of a lossless DUT.

We have computed ZPAM and found that ZPAM12 =
ZPAM21 = 0, so that rankZPAM12 = rankZPAM21 = 0.

FM1 and FM2 have been computed by utilizing Theorem 7

and (33). The results FM1 ≃ 1.000000 and FM2 ≃ 1.000000
are compatible with Theorem 11.

X. CONCLUSION
We have stated and proven a new reciprocal theorem on the

power transfer ratios between two passive multiport devices.

This theorem is reciprocal in the sense that it relates the

power transfer ratio tA to the power transfer ratio tB . How-

ever, this theorem does not assume that ZGA and ZGB are

symmetric. That is, it does not assume that the N -port load

used in CA or the N -port load used in CB satisfy the relations

stated in the conclusion of the classical reciprocity theorem,

as for instance set forth in [4, Ch. 16] and [28, Ch. 1].

We have used the reciprocal theorem on the power transfer

ratios to define the power match figure FM from the mini-

mum values of tA or tB . FM is a metric of the power transfer

ratios. It is relevant to all situations in which the location of

ISGA/||ISGA||2 on SN is not constant or not known, or in

which the location of ISGB/||ISGB ||2 on SN is not constant

or not known.

In the case where the ports of the N -port generator used

in CA, or of the N -port load used in CB, are uncoupled and

present the same real impedance r0, we have shown that FM

is equal to the return figure FR determined for the reference

resistance r0. In this case, we have explained that, in contrast

to FR, the absolute values of the entries Spq of S do not

sufficiently characterize the power transfer ratio in CA, when

the location of ISGA/||ISGA||2 on SN is not constant or not

known. This result might look more surprising if we phrase

it: “the phases of the entries of the scattering matrix have an

influence on the power transfer ratios”.

We have looked at the special case in which one of the

two passive multiport devices is a multiport antenna array

(MAA). In this case, CA may correspond to emission, and

CB to reception. We have explained why FM or FR should
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be considered as matching metrics or design parameters for

a MAA used for MIMO radio transmission using spatial

multiplexing. FR may advantageously be used to specify

and characterize the MAA. Any monotone function of FR is

often a good choice of performance parameter for designing

and optimizing a MAA, adjusting a decoupling and matching

circuit of the MAA, and automatically adjusting a multiple-

antenna-port antenna tuner for the MAA [11].

We have also looked at the power transfer ratios occurring

at each side of a passive MIMO device. We have established

several theorems applicable to the case in which the MIMO

device is lossless. This case is relevant to ideal decoupling

and matching circuits, and to ideal antenna tuners.

APPENDIX A
For the single-port generators and the single-port loads con-

sidered in Section I, in CA, the power reflection coefficient

defined in [6, Sec. III] is given by

ρP =

∣

∣

∣

∣

ZGB − ZGA

ZGA + ZGB

∣

∣

∣

∣

2

. (85)

It is the squared absolute value of the power-wave reflec-

tion coefficient used by numerous authors [6, Sec. III], [29,

Sec. 4.3], [30, Sec. 1.7]. By (85), we get

ρP =
[Re(ZGB)− Re(ZGA)]

2 + [Im(ZGB) + Im(ZGA)]
2

|ZGA + ZGB |2
,

(86)

and then

ρP = 1− 4Re(ZGA)Re(ZGB)

|ZGA + ZGB |2
= 1− tA . (87)

In [6, Sec. III], the power transmission coefficient in CA is

defined as 1− ρP , so that by (87) it is equal to tA. Likewise,

the power transmission coefficient in CB is equal to tB .

APPENDIX B
Let n be a positive integer. Let A and B be two square com-

plex matrices of size n by n, such that A+B is invertible.

We want to prove that K defined by (16) and L defined by

(17) have the same characteristic polynomial.

Proof: Using C = (A + B)−1, (16) and (17) may be

written

K = C
∗(A+A

∗)C(B+B
∗) (88)

and

L = C
∗(B+B

∗)C(A+A
∗) . (89)

Using C(A+B) = 1n = (A+B)C and (88), we get

K = (1n +C
∗
A−C

∗
B

∗)(1n +CB
∗ −CA) (90)

from which we obtain

K = C
∗(A−B

∗)C(B∗ −A)

+C
∗(A−B

∗) +C(B∗ −A) + 1n . (91)

Thus, we have

K = [C∗(A−B
∗)C−C

∗ +C](B∗ −A) + 1n . (92)

Likewise, using (88), we get

L = [C∗(B−A
∗)C−C

∗ +C](A∗ −B) + 1n . (93)

Let us now study K
∗. Using (88), we obtain

K
∗ = (B+B

∗)C∗(A+A
∗)C . (94)

It follows from [18, Sec. 1.3.22] that K
∗ has the same

eigenvalues, counting multiplicities, as

J = C
∗(A+A

∗)C(B+B
∗) . (95)

A comparison of (88) and (95) shows that J = K. It

follows that K and K
∗ have the same eigenvalues, counting

multiplicities. Using (92), we obtain

K
∗ = (B−A

∗)[C∗(A∗ −B)C−C+C
∗] + 1n , (96)

which leads us to

K
∗ = (A∗ −B)[C∗(B−A

∗)C−C
∗ +C] + 1n . (97)

Let X = A
∗ − B and Y = C

∗(B − A
∗)C − C

∗ + C.

Consider the following identities involving bloc matrices of

size n by n:
(

XY + 1n 0

Y 1n

)(

1n X

0 1n

)

=

(

XY + 1n XYX+X

Y YX+ 1n

)

, (98)

and
(

1n X

0 1n

)(

1n 0

Y YX+ 1n

)

=

(

XY + 1n XYX+X

Y YX+ 1n

)

. (99)

The factor

Z =

(

1n X

0 1n

)

(100)

which appears in the left-hand side of (98) and in the left-

hand side of (99) is invertible since its determinant is 1. Thus,

we may invert it and conclude that

Z
−1

(

XY + 1n 0

Y 1n

)

Z =

(

1n 0

Y YX+ 1n

)

. (101)

It follows that the matrices

D1 =

(

XY + 1n 0

Y 1n

)

(102)

and

D2 =

(

1n 0

Y YX+ 1n

)

(103)

are similar. The eigenvalues of D1 are the eigenvalues of

XY+1n together with n ones. The eigenvalues of D2 are the

eigenvalues of YX+1n together with n ones. Since, by [18,

Sec. 1.3.4], D1 and D2 have the same eigenvalues, counting

multiplicities, it follows that XY + 1n and YX + 1n have

the same eigenvalues, counting multiplicities.

By (97), we have K
∗ = XY + 1n, and by (93), we have

L = YX + 1n. Having already established that K and K
∗

have the same eigenvalues, counting multiplicities, we may

conclude that K and L have the same eigenvalues, counting

multiplicities.
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