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ABSTRACT We investigate a reciprocal and passive linear time-invariant multiport, having a port set

coupled to a generator and a port set coupled to a load, in the harmonic steady state. Two configurations are

considered, in which the port set at which the generator is connected and the port set at which the load is

connected are exchanged. We establish a new reciprocal theorem about the bounds of the set of the values

of the transducer power gain obtained for all nonzero excitations, in the two configurations. For the case

where the two port sets have the same number of ports, we also state and prove a new reciprocal theorem

about the bounds of the set of the values of the insertion power gain obtained for all nonzero excitations, in

the two configurations.

INDEX TERMS Reciprocity, transducer power gain, insertion power gain, passive circuits, linear circuits,

circuit theory.

I. INTRODUCTION
This article is a revised and expanded version of the material

presented in [1]–[2].

A device under study (DUS) is a linear time-invariant (LTI)

and passive 2-port operating in the harmonic steady state, at

a given frequency. It is used in two configurations, which

are shown in Fig. 1. In configuration A (CA), its port 1 is

connected to an LTI generator of internal impedance ZS1 and

its port 2 is connected to an LTI load of impedance ZS2. In

configuration B (CB) its port 1 is connected to an LTI load of

impedance ZS1 and its port 2 is connected to an LTI generator

of internal impedance ZS2. Let us use:

• PAAVG1 to denote the average power available from the

generator at port 1, in CA;

• PADP2 to denote the average power delivered by port 2,

in CA;

• PBAVG2 to denote the average power available from the

generator at port 2, in CB; and

• PBDP1 to denote the average power delivered by port 1,

in CB.

To ensure that PAAVG1 and PBAVG2 are defined, we

assume that the real parts of ZS1 and ZS2 are both positive.

We assume that the DUS is a reciprocal device, which in

this paper refers to the definitions of reciprocal networks

provided in [3, Ch. 1] or [4, Ch. 16], which are not limited

to lumped networks (see Appendix). Ignoring noise power

FIGURE 1. The two configurations, CA and CB, considered in the introduction.

contributions, and assuming nonzero PAAVG1 and PBAVG2,

we have
PADP2

PAAVG1
=

PBDP1

PBAVG2
. (1)

This reciprocal relation means that the transducer power

gains are equal in the two configurations. It was stated and

proven in [5], using power waves. A less general version

had been established 35 years earlier, using the entries of the

impedance matrix of the DUS [6].

This paper is about power in passive LTI multiports. Our

proofs are based on Section II, which introduces broad-

ened definitions of parallel-augmented multiports and series-

augmented multiports, and provides new results concerning

them. In Section III, these new results are compared to known

properties of augmented networks [7]–[10].

Sections IV to VI present new theoretical developments on

power ratios relating to any DUS which is an LTI and passive

multiport having one or more input ports and one or more
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output ports. The main result of Section IV is a reciprocal

theorem on the transducer power gain (Theorem 4), which

extends (1) to such a DUS. Section V presents a new theoret-

ical development which, in the case where an insertion power

gain may be defined, leads to a reciprocal theorem on the

insertion power gain (Theorem 6). The reciprocal theorems

are partially applicable to any LTI DUS, and fully applicable

to a reciprocal DUS in which bidirectional signaling or power

transfer takes place, such as the one presented in Section VII.

II. PRELIMINARIES
We use M

∗ to denote the hermitian adjoint of an arbitrary

complex matrix M. Recall that, if M is square, the hermitian

part of M, denoted by H(M), is the matrix given by

H (M) =
M+M

∗

2
. (2)

It is well-known that a positive definite matrix is invertible,

and that its inverse is positive definite [11, Sec. 7.2.1]. The

following lemma is more general.

Lemma 1. Let M be a square complex matrix. If H(M)
is positive definite, then M is invertible and H(M−1) is

positive definite.

Proof: By the Ostrowski-Taussky determinant inequality

[11, Sec. 7.8.19]–[12], if H(M) is positive definite, then

|detM| is positive. Thus, M is invertible. The fact that

H(M−1) is positive definite is for instance proven in [13],

using the theory of pencils of hermitian forms, and in partic-

ular Theorem 22 of Chapter X of [14].

It is useful to clarify the vocabulary which will be used in

what follows. We only consider the harmonic steady state, at

a given frequency. Infinity is not a real number. We consider

that resistance, reactance, conductance and susceptance are

real (real numbers or real functions), so that they cannot be

infinite. Infinity is not a complex number. We consider that

impedance and admittance are complex (complex numbers

or complex functions), so that they cannot be infinite. Thus,

a port having zero admittance has no impedance, and a port

having zero impedance has no admittance. We use Re(z) to

denote the real part of the complex number z.

We consider an LTI multiport having N ports, where N
is an integer greater than or equal to one, the N ports being

numbered from 1 to N . This multiport is referred to as the

“original multiport”. At the given frequency, the original

multiport need not have an impedance matrix, because:

• it need not be possible to inject an arbitrary current in

any one of its ports (i.e. one of its ports may present

a zero admittance), in a setup where its other ports are

open-circuited, as for instance shown in the examples of

Fig. 2 (a) and (b); and

• when it is possible to inject an arbitrary current in one

of its ports, in a setup where its other ports are open-

circuited, then the voltage across each of its ports need

not be finite, e.g., in the 2-port shown in Fig. 2 (c), at its

resonant frequency and excited at its port 1.

FIGURE 2. Three LTI 2-ports which do not have an impedance matrix: (a)
comprises only a single resistor; (b) comprises only an ideal transformer; and
(c) comprises a series resonant circuit driven, at its resonant frequency, by an
ideal voltage amplifier (i.e., a dependent voltage source) of gain µ.

Likewise, at the given frequency, the original multiport

need not have an admittance matrix, because:

• it need not be possible to apply an arbitrary voltage to

any one of its ports (i.e. one of its ports may present

a zero impedance), in a setup where its other ports are

short-circuited; and

• when it is possible to apply an arbitrary voltage to one

of its ports, in a setup where its other ports are short-

circuited, then the current flowing into each of its ports

need not be finite.

We note that, for the original multiport shown in Fig. 2 (c),

a Laplace domain impedance matrix exists for Re(s) > 0,

which can be used to describe and predict the behavior of

this circuit in the Laplace and time domains. However, in the

harmonic steady state considered in this paper, this multiport

has no impedance matrix at the resonant frequency.

According to these considerations, we need to take into ac-

count the possibility of infinite voltages or currents occurring

at the ports of the original multiport.

In what follows, we assume that the original multiport is

passive, and we also consider another LTI multiport, referred

to as the “added multiport”. The added multiport is arbitrary,

but we assume that it has N ports numbered from 1 to N ,

and that, at any frequency, it has an impedance matrix having

a positive definite hermitian part, or an admittance matrix

having a positive definite hermitian part.

Lemma 2. The added multiport has the following properties:

(a) at any frequency, the added multiport has an impedance

matrix, denoted by ZA, and an admittance matrix YA =
Z

−1
A ;

(b) at any frequency, the matrices ZA and YA each have a

positive definite hermitian part;

(c) the average power received by the added multiport, de-

noted by PA, satisfies PA > 0 W, in other words the

added multiport is passive;
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(d) we have PA = 0W if and only if the voltage across each

port of the added multiport is 0 V, or equivalently if and

only if the current flowing into each port of the added

multiport is 0 A;

(e) if PA is finite, the absolute value of the voltage across

any port of the added multiport must be finite, and the

absolute value of the current flowing into any port of the

added multiport must be finite.

Proof: The results (a) and (b) are direct consequences of

Lemma 1. For any p ∈ {1, . . . , N}, let vp be the complex rms

voltage across port p. Since YA exists, for any (v1, . . . , vN )
the average power received by the added multiport is

PA =
(

v1 · · · vN
) YA +Y

∗

A

2







v1
...

vN






, (3)

where the horizontal bar represents the complex conjugate.

This may be written

PA = V
∗H(YA)V where V =







v1
...

vN






. (4)

The results (c) and (d) follow from the assumption that

H(YA) is positive definite. To prove (e), we investigate the

power dissipation associated to an arbitrary V. Let λmin

be the smallest eigenvalue of H(YA). Using Rayleigh’s

theorem [11, Sec. 4.2.2], we obtain

λminV
∗

V 6 V
∗H(YA)V . (5)

Since H(YA) is positive definite, λmin > 0 S and we may

conclude that, for any integer q ∈ {1, . . . , N},

|vq|2 6 V
∗

V 6
PA

λmin
. (6)

Thus, any infinite voltage would require an infinite power

dissipation. Thus, if PA is finite, the absolute value of the

voltage across any port of the added multiport must be

finite. A similar conclusion for currents may be obtained by

utilizing PA = I
∗H(ZA)I instead of (4).

We can make up for the fact that the original multiport need

not have an impedance matrix, in the following way. For any

integer p ∈ {1, . . . , N}, we can connect port p of the original

multiport in parallel with port p of the added multiport, as

shown in Fig. 3 for N = 2, to obtain a new multiport, re-

ferred to as the parallel-augmented multiport, having N ports

numbered from 1 to N . The parallel-augmented multiport is

LTI and it follows from Lemma 2 (c) that it is passive.

Theorem 1. At any frequency, the parallel-augmented mul-

tiport has an impedance matrix, denoted by ZPAM , which

depends on YA and has a positive semidefinite hermitian

part. Moreover, if the added multiport is a reciprocal device

(i.e., if YA is symmetric) and the original multiport is a

reciprocal device, then ZPAM is symmetric.

FIGURE 3. The parallel-augmented multiport, for N = 2.

FIGURE 4. A first equivalent circuit of the original multiport, for N = 2.

Proof: For any p ∈ {1, . . . , N}, let us consider port p of

the parallel-augmented multiport, in a setup where its other

ports are open-circuited.

If port p does not have an impedance of 0 Ω, we can

apply a complex rms voltage vp = 1V at port p. Since the

original multiport is passive, the parallel-augmented multi-

port receives a power P which satisfies P > PA, where

PA is the power received by the added multiport in this

configuration. Since vp = 1V, we have PA > 0W by

Lemma 2 (d). Thus, a complex current ip flows into port p of

the parallel-augmented multiport and Re(ip) > 0A, because

P = vpRe(ip) > 0W. Thus, under our assumption, port p of

the parallel-augmented multiport has an impedance, having a

positive real part.

If we no longer assume that port p of the parallel-

augmented multiport does not have an impedance of 0 Ω,

we can say that this port p has an impedance, denoted by

Z, such that Re(Z) > 0Ω. Thus, a current source delivering

a complex rms current ip = 1A may be connected to port

p of the parallel-augmented multiport. This current source

produces a finite voltage Z ip across port p. The original

multiport being passive, we have

PA 6 |ip|2 Re(Z) . (7)

which shows that PA is finite. Thus, by Lemma 2 (e), we

can say that, for any q ∈ {1, . . . , N}, |vq| is finite, and
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FIGURE 5. The series-augmented multiport, for N = 2.

FIGURE 6. A second equivalent circuit of the original multiport, for N = 2.

corresponds to a transfer impedance if q 6= p, or to the

impedance Z if q = p.

Since all this can be done for any p ∈ {1, . . . , N}, we can

determine an impedance matrix of the parallel-augmented

multiport, which has a positive semidefinite hermitian part

because the parallel-augmented multiport is passive. Proving

the last statement of the theorem, concerning reciprocity, is

simple or involved, according to the definition of reciprocity

used. This statement is proven in the Appendix.

Corollary 1. The original multiport has an equivalent cir-

cuit, shown in Fig. 4 for N = 2, comprising the parallel-

augmented multiport and a multiport having N ports num-

bered from 1 to N , of admittance matrix −YA, the equivalent

circuit being such that, for any integer p ∈ {1, . . . , N},

port p of this multiport is connected in parallel with port

p of the parallel-augmented multiport. Consequently, if the

original multiport has an admittance matrix Y, then: ZPAM

is invertible; Z−1
PAM = Y + YA; and, if YA is symmetric,

ZPAM is symmetric if and only if Y is symmetric.

We can also make up for the fact that the original multiport

need not have an admittance matrix, in a different way. For

any p ∈ {1, . . . , N}, we can connect port p of the original

multiport in series with port p of the added multiport, as

shown in Fig. 5 for N = 2, to obtain a new multiport,

referred to as the series-augmented multiport, having N ports

numbered from 1 to N . The series-augmented multiport is

LTI and it follows from Lemma 2 (c) that it is passive.

Theorem 2. At any frequency, the series-augmented multi-

port has an admittance matrix, denoted by YSAM , which

depends on ZA and has a positive semidefinite hermitian part.

Moreover, if the added multiport is a reciprocal device (i.e.,

if ZA is symmetric) and the original multiport is a reciprocal

device, then YSAM is symmetric.

The proof of Theorem 2 is similar to the proof of Theorem

1 and is consequently omitted.

Corollary 2. The original multiport has an equivalent circuit,

shown in Fig. 6 for N = 2, comprising the series-augmented

multiport and a multiport having N ports numbered from one

to N , of impedance matrix −ZA, the equivalent circuit being

such that, for any integer p ∈ {1, . . . , N}, port p of this

multiport is connected in series with port p of the series-

augmented multiport. Consequently, if the original multi-

port has an impedance matrix Z, then: YSAM is invertible;

Y
−1
SAM = Z + ZA; and, if ZA is symmetric, YSAM is

symmetric if and only if Z is symmetric .

III. COMPARISON TO EARLIER USES OF
AUGMENTED NETWORKS
A particular series-augmented multiport (referred to as “aug-

mented network”), in which the added multiport is made of

N resistors of nonzero resistance R0 each connected in series

with one of the ports of the original multiport, was used by

Carlin in [7] and Oono in [8] to define the scattering matrix

of the original multiport, by

S = 1N − 2R0YSAM , (8)

where S is the scattering matrix of the original multiport for

the reference resistance R0, and 1N is the identity matrix of

size N by N . These authors assumed the existence of YSAM

as a premise, so that (8) proved that S always exists.

A particular parallel-augmented multiport, in which the

added multiport is made of resistors of nonzero conductance

G0 each connected in parallel with one of the ports of the

original multiport, is mentioned in [7], where it is said to be

also suitable to define the scattering matrix of the original

multiport.

Thus, the existence of YSAM and ZPAM at any (real)

frequency is postulated in [7] and [8], on account of the added

resistors, without additional explanation. The existence of

YSAM at any frequency is a consequence of Theorem 2 of

a paper of Youla, Castriota and Carlin [9]–[10], the proof of

which is involved and based on several assumptions (whose

physical significance is not elementary). In section 3.3 of

[15], a particular series-augmented multiport and a particular

parallel-augmented multiport are introduced, in connection
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with the definition of scattering matrices. In both cases, the

added multiport has a diagonal impedance matrix, and the

existence of YSAM and ZPAM is regarded as obvious.

Consequently, we may say that the series-augmented mul-

tiport and the parallel-augmented multiport defined in Sec-

tion III are more general than the ones considered in [7]–[10]

and [15], and that we have provided a new and simple proof

of the existence of YSAM and ZPAM at any frequency. The

existence of ZPAM is instrumental in what follows, but we

could have used YSAM instead of ZPAM .

IV. THEOREMS ON THE TRANSDUCER POWER GAIN
In what follows, we use rms values for the phasors of voltages

and currents, and we ignore noise power contributions.

A device under study (DUS) is a passive LTI multiport

having 2 sets of ports, referred to as port set 1 and port set

2. Port set 1 consists of m ports numbered from 1 to m, and

port set 2 consists of n ports numbered from 1 to n, where

m and n are integers greater than or equal to 1. The DUS

is an (m + n)-port. In what follows, when we say that port

set 1 is connected to an m-port device, it is assumed that the

ports of the m-port device are numbered from 1 to m, and

that, for any integer p ∈ {1, . . . ,m}, its port p is connected

to port p of port set 1 (positive terminal to positive terminal

and negative terminal to negative terminal). Likewise, when

we say that port set 2 is connected to an n-port device, it

is assumed that the ports of the n-port device are numbered

from 1 to n, and that, for any integer q ∈ {1, . . . , n}, its port

q is connected to port q of port set 2 (positive terminal to

positive terminal and negative terminal to negative terminal).

The DUS operates in the harmonic steady state, at a given

frequency fG. It is used in two configurations, which are

shown in Fig. 7. In configuration A (CA), port set 1 is

connected to an LTI m-port generator of internal impedance

matrix ZS1 at fG, and port set 2 is connected to an LTI n-

port load of impedance matrix ZS2 at fG. In configuration

B (CB), port set 1 is connected to an LTI m-port load of

impedance matrix ZS1 at fG, and port set 2 is connected to

an LTI n-port generator of internal impedance matrix ZS2 at

fG. Let us use:

• PAAVG1 to denote the average power available from the

generator at port set 1, in CA;

• PADP2 to denote the average power delivered by port

set 2, in CA;

• PBAVG2 to denote the average power available from the

generator at port set 2, in CB; and

• PBDP1 to denote the average power delivered by port

set 1, in CB.

We assume that the hermitian parts of ZS1 and ZS2 are

positive definite. By Lemma 1, we can define YS1 = Z
−1
S1

and YS2 = Z
−1
S2 , the hermitian parts of YS1 and YS2 being

both positive definite. It also follows from Lemma 1 that,

instead of assuming that ZS1 and ZS2 exist and that H(ZS1)
and H(ZS2) are positive definite, we could equivalently have

assumed that YS1 and YS2 exist and that H(YS1) and

H(YS2) are positive definite.

FIGURE 7. The two configurations, CA and CB, considered in Section IV and
Section V.

Let IS1 and VO1 be the column vectors of the short-

circuit currents and of the open-circuit voltages of the m-

port generator at port set 1 in CA, respectively. H(YS1) and

H(ZS1) being positive definite, YS1 +Y
∗

S1 and ZS1 +Z
∗

S1

are invertible, so that the power available from the m-port

generator at port set 1 in CA is defined and given by [16]–

[17]:

PAAVG1 =
1

2
I
∗

S1 (YS1 +Y
∗

S1)
−1

IS1 , (9)

or

PAAVG1 =
1

2
V

∗

O1 (ZS1 + Z
∗

S1)
−1

VO1 . (10)

By [11, Sec. 7.2.1], (YS1 +Y
∗

S1)
−1 and (ZS1 + Z

∗

S1)
−1

are positive definite. Thus, PAAVG1 is nonzero if and only

if IS1 is nonzero, or, equivalently, if and only if VO1 is

nonzero.

Let IS2 and VO2 be the column vectors of the short-

circuit currents and of the open-circuit voltages of the n-

port generator at port set 2 in CB, respectively. H(YS2) and

H(ZS2) being positive definite, YS2 +Y
∗

S2 and ZS2 +Z
∗

S2

are invertible, so that the power available from the n-port

generator at port set 2 in CB is defined and given by:

PBAVG2 =
1

2
I
∗

S2 (YS2 +Y
∗

S2)
−1

IS2 , (11)

or

PBAVG2 =
1

2
V

∗

O2 (ZS2 + Z
∗

S2)
−1

VO2 . (12)

Since (YS2 + Y
∗

S2)
−1 and (ZS2 + Z

∗

S2)
−1 are positive

definite, PBAVG2 is nonzero if and only if IS2 is nonzero, or,

equivalently, if and only if VO2 is nonzero.

At this stage, we know that the transducer power gain in

CA, given by PADP2/PAAVG1, is defined for any nonzero

VO1 and for any nonzero IS1; and that the transducer power

gain in CB, given by PBDP1/PBAVG2, is defined for any

nonzero VO2 and for any nonzero IS2.

We consider the ports of the DUS in the following order:

ports 1 to m of port set 1, and then ports 1 to n of port set 2.

Let us introduce a parallel-augmented multiport composed

Copyright © 2021 by Excem 5
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of the DUS (as original multiport), of an m-port load of

impedance matrix ZS1 connected to port set 1, and of an n-

port load of impedance matrix ZS2 connected to port set 2.

Here, the impedance matrix of the added multiport is

ZA =

(

ZS1 0

0 ZS2

)

. (13)

The hermitian parts of ZS1 and ZS2 being positive def-

inite, it follows that the hermitian part of ZA is positive

definite. By Theorem 1, the parallel-augmented multiport has

an impedance matrix ZPAM . The matrix ZPAM is of size

(m + n) by (m + n) and it may be partitioned into four

submatrices, ZPAM11 of size m by m, ZPAM12 of size m
by n, ZPAM21 of size n by m and ZPAM22 of size n by n,

which are such that

ZPAM =

(

ZPAM11 ZPAM12

ZPAM21 ZPAM22

)

. (14)

Using Corollary 1, by inspection, we obtain

PADP2 = I
∗

S1Z
∗

PAM21

YS2 +Y
∗

S2

2
ZPAM21IS1 (15)

and

PBDP1 = I
∗

S2Z
∗

PAM12

YS1 +Y
∗

S1

2
ZPAM12IS2 . (16)

Using (9), (11), (15) and (16), we find that the transducer

power gains in CA and CB are given by

PADP2

PAAVG1
=

I
∗

S1Z
∗

PAM21(YS2 +Y
∗

S2)ZPAM21IS1

I∗S1(YS1 +Y∗

S1)
−1IS1

(17)

and

PBDP1

PBAVG2
=

I
∗

S2Z
∗

PAM12(YS1 +Y
∗

S1)ZPAM12IS2

I∗S2(YS2 +Y∗

S2)
−1IS2

, (18)

respectively. Since these ratios depend on IS1 and IS2, (1)

cannot apply here, except in very special cases. Conse-

quently, some work is needed to generalize (1) to the DUS

considered here.

Let A be a positive definite matrix. We know that there

exists a unique positive definite matrix B such that B2 = A

[11, Sec. 7.2.6]. The matrix B is referred to as the unique

positive definite square root of A, and is denoted by A
1/2.

It satisfies (A1/2)−1 = (A−1)1/2. This allows us to write

A
−1/2 = (A1/2)−1 = (A−1)1/2. Since H(YS1) and

H(YS2) are positive definite, we can define the matrices

M1 = (YS1 +Y
∗

S1)
1/2

Z
∗

PAM21

× (YS2 +Y
∗

S2)ZPAM21(YS1 +Y
∗

S1)
1/2 , (19)

which is of size m by m, and

M2 = (YS2 +Y
∗

S2)
1/2

Z
∗

PAM12

× (YS1 +Y
∗

S1)ZPAM12(YS2 +Y
∗

S2)
1/2 , (20)

which is of size n by n. M1 and M2 are clearly hermitian,

so that their eigenvalues are real. Note that the eigenvalues of

M1 and M2 are dimensionless numbers, since M1 and M2

are dimensionless matrices.

Theorem 3. The matrices M1 and M2 defined by (19) and

(20) are positive semidefinite, so that their eigenvalues are

nonnegative. Let λ1max be the largest eigenvalue of M1

and λ1min the smallest eigenvalue of M1. Let λ2max be the

largest eigenvalue of M2 and λ2min the smallest eigenvalue

of M2. We have

0 6 λ1min 6 λ1max 6 1 , (21)

0 6 λ2min 6 λ2max 6 1 , (22)

0 6 λ1minPAAVG1 6 PADP2 6 λ1maxPAAVG1 , (23)

and

0 6 λ2minPBAVG2 6 PBDP1 6 λ2maxPBAVG2 . (24)

Moreover,

• the equality PADP2 = λ1maxPAAVG1 is satisfied if IS1

is the product of (YS1+Y
∗

S1)
1/2 and an eigenvector of

M1 associated with λ1max, measured in A1/2V1/2;

• the equality PADP2 = λ1minPAAVG1 is satisfied if IS1

is the product of (YS1+Y
∗

S1)
1/2 and an eigenvector of

M1 associated with λ1min, measured in A1/2V1/2;

• the equality PBDP1 = λ2maxPBAVG2 is satisfied if IS2

is the product of (YS2+Y
∗

S2)
1/2 and an eigenvector of

M2 associated with λ2max, measured in A1/2V1/2; and

• the equality PBDP1 = λ2minPBAVG2 is satisfied if IS2

is the product of (YS2+Y
∗

S2)
1/2 and an eigenvector of

M2 associated with λ2min, measured in A1/2V1/2.

Moreover, if ZPAM , ZS1 and ZS2 are symmetric, we

have:

• λ1max = λ2max ;

• if m = n, then λ1min = λ2min ;

• if m > n, then λ1min = 0 ; and

• if m < n, then λ2min = 0 .

Proof: The hermitian part of YS2 being positive definite,

M1 is positive semidefinite by [11, Sec. 7.1.8], so that its

eigenvalues are nonnegative by [11, Sec. 7.1.4]. For CA, let

us introduce the new variable X1 = (YS1 +Y
∗

S1)
−1/2

IS1.

Since IS1 = (YS1 + Y
∗

S1)
1/2

X1, it follows from (9), (15)

and (19) that

PAAVG1 =
1

2
X

∗

1X1 and PADP2 =
1

2
X

∗

1M1X1 . (25)

By Rayleigh’s theorem [11, Sec. 4.2.2], we have

0 6 λ1minX
∗

1X1 6 X
∗

1M1X1 6 λ1maxX
∗

1X1 , (26)

which, used with (25), proves (23). The other assertions

of Theorem 3 relating to M1 also result from Rayleigh’s

theorem and the definition of X1. The fact that λ1max 6 1
is a consequence of the fact that there exists a value of X1

for which PADP2 = λ1maxPAAVG1, while the passivity of

the DUS entails PADP2 6 PAAVG1. The arguments for the

assertions of Theorem 3 relating to M2 and for λ2max 6 1
are similar.
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Since (YS1+Y
∗

S1)
1/2 and (YS2+Y

∗

S2)
1/2 are invertible

square matrices, it follows from [11, Sec. 1.3.22] that M1 has

the same eigenvalues, counting multiplicity, as

N1 = Z
∗

PAM21

× (YS2 +Y
∗

S2)ZPAM21(YS1 +Y
∗

S1) , (27)

which is of size m by m; and that M2 has the same eigenval-

ues, counting multiplicity, as

N2 = Z
∗

PAM12

× (YS1 +Y
∗

S1)ZPAM12(YS2 +Y
∗

S2) , (28)

which is of size n by n. If ZPAM , ZS1 and ZS2 are symmet-

ric, then YS1 and YS2 are symmetric and the transpose of

ZPAM12 is ZPAM21, so that the transpose of N2 is

N
T
2 = (YS2 +Y

∗

S2)

× ZPAM21(YS1 +Y
∗

S1)Z
∗

PAM21 . (29)

By [11, Sec. 1.4.1], the eigenvalues of NT
2 are the same

as those of M2, counting multiplicity. We can then observe

that the right hand sides of (27) and (29) are Z
∗

PAM21B and

BZ
∗

PAM21, respectively, where B is the matrix given by

(YS2 + Y
∗

S2)ZPAM21(YS1 + Y
∗

S1). Consequently, using

[11, Sec. 1.3.22] again and the fact that Z∗

PAM21 is of size m
by n, we find that:

• if m = n, then M1 and M2 have the same eigenvalues,

counting multiplicity;

• if m > n, then M1 has the same eigenvalues as M2,

counting multiplicity, together with m − n additional

eigenvalues equal to zero; and

• if m < n, then M2 has the same eigenvalues as M1,

counting multiplicity, together with n − m additional

eigenvalues equal to zero.

This leads to the final assertion of Theorem 3.

Observation 1. We note that, if we only need the eigenvalues

of M1 or M2, the shortest computation is a direct computa-

tion of the eigenvalues of N1 or N2 defined by (27) and (28).

Using Theorem 3, we get the new Reciprocal theorem on

the transducer power gain, which reads as follows.

Theorem 4. Ignoring noise power contributions and using

the notations of Theorem 3, we can assert that:

(a) the set of the values of the transducer power gain in CA,

that is of GTA = PADP2/PAAVG1, obtained for all

nonzero VO1, or equivalently for all nonzero IS1, has

a least element referred to as “minimum value”, equal to

λ1min, and a greatest element referred to as “maximum

value”, equal to λ1max;

(b) the set of the values of the transducer power gain in CB,

that is of GTB = PBDP1/PBAVG2, obtained for all

nonzero VO2, or equivalently for all nonzero IS2, has

a least element referred to as “minimum value”, equal to

λ2min, and a greatest element referred to as “maximum

value”, equal to λ2max;

(c) if the DUS and both loads are reciprocal devices, the

maximum value of GTA and the maximum value of GTB

are equal to λ1max = λ2max; and

(d) if the DUS and both loads are reciprocal devices, and

if m = n, then the minimum value of GTA and the

minimum value of GTB are equal to λ1min = λ2min.

V. THEOREMS ON THE INSERTION POWER GAIN
For n = m, let PAW be the power which would be received

by the n-port load connected at port set 2 in CA, if the DUS

was not present and this n-port load was directly connected to

the m-port generator connected at port set 1 in CA. We note

that H(YS1 + YS2) is positive definite, so that, by Lemma

1, YS1 +YS2 is invertible. We have

PAW = I
∗

S1(YS1 +YS2)
−1∗

× YS2 +Y
∗

S2

2
(YS1 +YS2)

−1
IS1 , (30)

so that the insertion power gain of the DUS in CA is given by

PADP2

PAW
=

I
∗

S1Z
∗

PAM21(YS2 +Y
∗

S2)ZPAM21IS1

[I∗S1(YS1 +YS2)
−1∗(YS2 +Y

∗

S2)
×(YS1 +YS2)

−1
IS1]

, (31)

where we have used (15). Let PBW be the power which

would be received by the m-port load connected at port set 1

in CB, if the DUS was not present and this m-port load was

directly connected to the n-port generator connected at port

set 2 in CB. Using again the fact that YS1+YS2 is invertible,

we find

PBW = I
∗

S2(YS1 +YS2)
−1∗

× YS1 +Y
∗

S1

2
(YS1 +YS2)

−1
IS2 , (32)

so that the insertion power gain of the DUS in CB is given by

PBDP1

PBW
=

I
∗

S2Z
∗

PAM12(YS1 +Y
∗

S1)ZPAM12IS2

[I∗S2(YS1 +YS2)
−1∗(YS1 +Y

∗

S1)
×(YS1 +YS2)

−1
IS2]

, (33)

where we have used (16).

The hermitian parts of YS1 and YS2 being positive defi-

nite, we may conclude that the matrices

L1 = (YS1+YS2)
−1∗(YS2+Y

∗

S2)(YS1+YS2)
−1 (34)

and

L2 = (YS1+YS2)
−1∗(YS1+Y

∗

S1)(YS1+YS2)
−1 (35)

are hermitian and positive definite. Thus, we can define the

matrices

M1 = L
−1/2
1 Z

∗

PAM21(YS2 +Y
∗

S2)ZPAM21L
−1/2
1 (36)

and

M2 = L
−1/2
2 Z

∗

PAM12(YS1 +Y
∗

S1)ZPAM12L
−1/2
2 (37)

Since L
−1/2
1 and L

−1/2
2 are hermitian, M1 and M2 are

hermitian, so that their eigenvalues are real. Note that the
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eigenvalues of M1 and M2 are dimensionless numbers, since

M1 and M2 are dimensionless matrices.

Theorem 5. The matrices M1 and M2 defined by (36) and

(37) are positive semidefinite, so that their eigenvalues are

nonnegative. Let λ1max be the largest eigenvalue of M1

and λ1min the smallest eigenvalue of M1. Let λ2max be the

largest eigenvalue of M2 and λ2min the smallest eigenvalue

of M2. We have

0 6 λ1min 6 λ1max , (38)

0 6 λ2min 6 λ2max , (39)

0 6 λ1minPAW 6 PADP2 6 λ1maxPAW , (40)

and

0 6 λ2minPBW 6 PBDP1 6 λ2maxPBW . (41)

Moreover,

• the equality PADP2 = λ1maxPAW is satisfied if IS1

is the product of L
−1/2
1 and an eigenvector of M1

associated with λ1max, measured in A1/2V1/2;

• the equality PADP2 = λ1minPAW is satisfied if IS1

is the product of L
−1/2
1 and an eigenvector of M1

associated with λ1min, measured in A1/2V1/2;

• the equality PBDP1 = λ2maxPBW is satisfied if IS2

is the product of L
−1/2
2 and an eigenvector of M2

associated with λ2max, measured in A1/2V1/2; and

• the equality PBDP1 = λ2minPBW is satisfied if IS2

is the product of L
−1/2
2 and an eigenvector of M2

associated with λ2min, measured in A1/2V1/2.

Moreover, if ZPAM is symmetric and if there exist two

complex numbers ZS1 and ZS2 such that ZS1 = ZS11m and

ZS2 = ZS21n, then λ1max = λ2max and λ1min = λ2min.

Moreover, if ZPAM , ZS1 and ZS2 are symmetric and if

ZPAM21, ZS1 and ZS2 are circulant, then λ1max = λ2max

and λ1min = λ2min.

Proof: The hermitian part of YS2 being positive definite,

M1 is positive semidefinite by [11, Sec. 7.1.8], so that its

eigenvalues are nonnegative by [11, Sec. 7.1.4]. For CA, let

us introduce the new variable X1 = L
1/2
1 IS1. Since IS1 =

L
−1/2
1 X1, it follows from (15), (30), (34) and (36) that

PAW =
1

2
X

∗

1X1 and PADP2 =
1

2
X

∗

1M1X1 . (42)

By Rayleigh’s theorem, we have

0 6 λ1minX
∗

1X1 6 X
∗

1M1X1 6 λ1maxX
∗

1X1 , (43)

which, used with (42), proves (40). The other assertions

of Theorem 5 relating to M1 also result from Rayleigh’s

theorem and the definition of X1. The arguments for the

assertions of Theorem 5 relating to M2 are similar.

It follows from [11, Sec. 1.3.22] that M1 has the same

eigenvalues, counting multiplicity, as

N1 = Z
∗

PAM21(YS2 +Y
∗

S2)ZPAM21L
−1
1 , (44)

and that M2 has the same eigenvalues, counting multiplicity,

as

N2 = Z
∗

PAM12(YS1 +Y
∗

S1)ZPAM12L
−1
2 . (45)

Using (34)-(35) in (44)-(45), we get

N1 = Z
∗

PAM21(YS2 +Y
∗

S2)ZPAM21

× (YS1 +YS2)(YS2 +Y
∗

S2)
−1(YS1 +YS2)

∗ , (46)

and

N2 = Z
∗

PAM12(YS1 +Y
∗

S1)ZPAM12

× (YS1 +YS2)(YS1 +Y
∗

S1)
−1(YS1 +YS2)

∗ . (47)

If ZPAM , ZS1 and ZS2 are symmetric, the transpose of

ZPAM12 is ZPAM21 so that the transpose of N2 is

N
T
2 = (YS1 +YS2)

∗(YS1 +Y
∗

S1)
−1

× (YS1 +YS2)ZPAM21(YS1 +Y
∗

S1)Z
∗

PAM21 . (48)

We need an additional assumption, suitable to allow us to

remove: (YS2 +Y
∗

S2) and (YS2 +Y
∗

S2)
−1 from (46); and

(YS1 +Y
∗

S1) and (YS1 +Y
∗

S1)
−1 from (48). A first possi-

bility is that we assume that there exist two complex numbers

ZS1 and ZS2 such that ZS1 = ZS11m and ZS2 = ZS21n.

A second possibility is that we assume that ZPAM21, ZS1

and ZS2 are circulant, because circulant matrices commute,

linear combinations of circulant matrices are circulant, and

the inverse of an invertible circulant matrix is circulant [11,

Sec. 0.9.6]. Using either assumption, we obtain

N1 = Z
∗

PAM21ZPAM21(YS1+YS2)(YS1+YS2)
∗ , (49)

and

N
T
2 = ZPAM21(YS1+YS2)(YS1+YS2)

∗

Z
∗

PAM21 . (50)

By [11, Sec. 1.4.1], the eigenvalues of NT
2 are the same

as those of M2, counting multiplicity. We can then observe

that the right hand sides of (49) and (50) are Z
∗

PAM21B and

BZ
∗

PAM21, respectively, where B is the matrix given by

ZPAM21(YS1 + YS2)(YS1 + YS2)
∗. Consequently, using

[11, Sec. 1.3.22] again, we find that M1 and M2 have the

same eigenvalues, counting multiplicity, which directly leads

to the final assertions of Theorem 5.

Observation 2. We note that, if we only need the eigenvalues

of M1 or M2, the shortest path is a direct computation of the

eigenvalues of N1 or N2 given by (44) and (45).

Observation 3. If ZPAM is symmetric, then ZPAM12 is

circulant if and only if ZPAM21 is circulant.

Proof: If ZPAM is symmetric, then Z
T
PAM12 = ZPAM21.

The transpose of a circulant matrix being circulant [18],

ZPAM12 is circulant if and only if ZPAM21 is circulant.

Observation 4. If ZS1 and ZS2 are circulant, if the DUS

has an impedance matrix Z which is a 2-by-2 block matrix,

the blocks of which are of size n by n and circulant, and

if Z is invertible, then ZPAM is a 2-by-2 block matrix, the

blocks of which are of size n by n and circulant. It follows

that ZPAM21 is circulant.
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Proof: We can use the formula for the inverse of a 2-by-

2 block matrix [11, Sec. 0.7.3], the facts that linear combi-

nations and products of circulant matrices are circulant, and

the fact that the inverse of an invertible circulant matrix is

circulant [11, Sec. 0.9.6], to show that the inverse of a 2-by-2

block matrix, the blocks of which are circulant, is a 2-by-2

block matrix, the blocks of which are circulant. We can use

this result thrice and Corollary 1 to get the wanted result.

It follows from (30) that the insertion power gain in CA,

given by PADP2/PAW , is defined for any nonzero VO1, and

for any nonzero IS1. It follows from (32), that the insertion

power gain in CB, given by PBDP1/PBW , is defined for any

nonzero VO2, and for any nonzero IS2. Thus, using Theorem

5, we obtain the new Reciprocal theorem on the insertion

power gain, which reads as follows.

Theorem 6. If n = m, ignoring noise power contributions

and using the notations of Theorem 5, we can assert that:

(a) the set of the values of the insertion power gain in CA,

that is of GIA = PADP2/PAW , obtained for all nonzero

VO1, or equivalently for all nonzero IS1, has a least

element referred to as “minimum value”, equal to λ1min,

and a greatest element referred to as “maximum value”,

equal to λ1max;

(b) the set of the values of the insertion power gain in CB,

that is of GIB = PBDP1/PBW , obtained for all nonzero

VO2, or equivalently for all nonzero IS2, has a least

element referred to as “minimum value”, equal to λ2min,

and a greatest element referred to as “maximum value”,

equal to λ2max;

(c) assuming that the DUS and both loads are reciprocal

devices, if there exist two complex numbers ZS1 and

ZS2 such that ZS1 = ZS11m and ZS2 = ZS21n, or if

ZPAM21, ZS1 and ZS2 are circulant, then: the maximum

value of GIA and the maximum value of GIB are equal

to λ1max = λ2max; and the minimum value of GIA and

the minimum value of GIB are equal to λ1min = λ2min.

VI. ADDITIONAL INVESTIGATIONS
A. USE OF AN EXTREMUM-SEEKING ALGORITHM

An extremum-seeking algorithm can be used to approximate

the maximum and minimum values defined in (a) and (b) of

Theorem 4 and Theorem 6, instead of computing them as

eigenvalues according to Theorem 3 and Theorem 5.

Let ||x||2 =
√
x∗x be the euclidian vector norm of an

arbitrary complex column vector x. For an arbitrary positive

integer N , we use SN to denote the hypersphere of the

unit vectors of C
N . It follows from (17) and (31) that the

transducer power gain GTA and the insertion power gain

GIA are not modified if IS1 is multiplied by an arbitrary

complex number. Thus, to approximate the maximum and

minimum values of GTA and GIA, an extremum-seeking

algorithm may posit IS1 ∈ Sm, and further assume that one

of the entries of IS1 is real and nonnegative. Likewise, it

follows from (18) and (33) that, to approximate the maximum

and minimum values of GTB and GIB , an extremum-seeking

algorithm may posit IS2 ∈ Sn, and further assume that one of

the entries of IS2 is real and nonnegative. These observations

lead to convenient and simple parametrizations. For instance,

for m = n = 2, the numerical algorithm can use

IS1 =

(

sin θ1 exp jφ1

cos θ1

)

(51)

in CA, where θ1 ∈ [0, π/2] and φ1 ∈ [−π, π], and

IS2 =

(

sin θ2 exp jφ2

cos θ2

)

(52)

in CB, where θ2 ∈ [0, π/2] and φ2 ∈ [−π, π]. Thus, for m =
n = 2, to estimate each maximum or minimum value defined

in (a) and (b) of Theorem 4 and Theorem 6, an extremum-

seeking algorithm may solve a problem having only 2 real

unknowns each lying in a bounded interval.

B. FIRST EXAMPLE

In a first example, we assume that

ZS1 =

(

51 + 39j 19 + 79j
27 + 56j 37 + 61j

)

Ω , (53)

ZS2 =

(

32 + 87j 11 + 41j
23 + 37j 73 + 13j

)

Ω , (54)

and that the DUS has an impedance matrix given by

Z =








89 + 25j 31 + 11j 31 + 5j 17 + 40j
21 + 3j 59 + 35j 3 + 62j 40 + 17j
3 + 21j 41 + 29j 73 + 41j 21 + 49j
33 + 13j 7 + 7j 23 + 42j 49 + 21j









Ω . (55)

ZS1, ZS2 and Z are not symmetric and have each a posi-

tive definite hermitian part. Corollary 1 can be used to obtain

ZPAM . The maximum and minimum values defined in (a)

and (b) of Theorem 4 and Theorem 6 have been computed as

eigenvalues according to Theorem 3 and Theorem 5, and in-

dependently determined by an extremum-seeking algorithm

using (51) or (52). Both methods give exactly the same

values, shown in Table 1.

TABLE 1. Results for the first example.

Quantity CA CB

maximum value of the transducer power gain 0.084966 0.171115

minimum value of the transducer power gain 0.013600 0.029740

maximum value of the insertion power gain 0.126970 0.291078

minimum value of the insertion power gain 0.048907 0.093953

Thus, if ZS1, ZS2 and Z are not symmetric, we find that:

the transducer power gain equalities stated in (c) and (d) of

Theorem 4 need not be true; and the insertion power gain

equalities stated in (c) of Theorem 6 need not be true.
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C. SECOND EXAMPLE

In a second example, we assume that

ZS1 =

(

51 + 39j 23 + 68j
23 + 68j 37 + 61j

)

Ω , (56)

ZS2 =

(

32 + 87j 17 + 39j
17 + 39j 73 + 13j

)

Ω , (57)

and that the DUS has an impedance matrix given by

Z =








89 + 25j 26 + 7j 17 + 13j 25 + 27j
26 + 7j 59 + 35j 22 + 46j 24 + 12j
17 + 13j 22 + 46j 73 + 41j 22 + 46j
25 + 27j 24 + 12j 22 + 46j 49 + 21j









Ω . (58)

Here, ZS1, ZS2 and Z are symmetric and have each a

positive definite hermitian part. Neither ZS1 nor ZS2 is in

the form of a complex number times an identity matrix.

Also, ZS1 and ZS2 are not circulant. The maximum and

minimum values defined in (a) and (b) of Theorem 4 and

Theorem 6 have been computed as eigenvalues according to

Theorem 3 and Theorem 5, and independently determined

by an extremum-seeking algorithm using (51) or (52). Both

methods give exactly the same values, shown in Table 2.

TABLE 2. Results for the second example.

Quantity CA CB

maximum value of the transducer power gain 0.065234 0.065234

minimum value of the transducer power gain 0.018019 0.018019

maximum value of the insertion power gain 0.159534 0.141010

minimum value of the insertion power gain 0.037131 0.042008

Thus, ZS1, ZS2 and Z being symmetric, we find that:

the transducer power gain equalities stated in (c) and (d) of

Theorem 4 are compatible with the computed values; and the

insertion power gain equalities stated in (c) of Theorem 6

need not be true in a case where we cannot say that ZS1

and ZS2 are each in the form of a complex number times

an identity matrix, and where we cannot say that ZS1, ZS2

and ZPAM21 are circulant.

D. THIRD EXAMPLE

In a third example, we assume that

ZS1 = (51 + 39j)

(

1 0
0 1

)

Ω , (59)

ZS2 = (32 + 87j)

(

1 0
0 1

)

Ω , (60)

and that the DUS has an impedance matrix given by (58).

Here, ZS1, ZS2 and Z are symmetric and have each a pos-

itive definite hermitian part. Also, ZS1 and ZS2 are each in

the form of a complex number times an identity matrix. The

maximum and minimum values defined in (a) and (b) of The-

orem 4 and Theorem 6 have been computed as eigenvalues

according to Theorem 3 and Theorem 5, and independently

determined by an extremum-seeking algorithm using (51) or

(52). Both methods give exactly the same values, shown in

Table 3.

TABLE 3. Results for the third example.

Quantity CA CB

maximum value of the transducer power gain 0.049441 0.049441

minimum value of the transducer power gain 0.017073 0.017073

maximum value of the insertion power gain 0.172413 0.172413

minimum value of the insertion power gain 0.059538 0.059538

ZS1, ZS2 and Z being symmetric, we find that: the trans-

ducer power gain equalities stated in (c) and (d) of Theorem

4 are compatible with the computed values; and, ZS1 and

ZS2 being each in the form of a complex number times an

identity matrix, the insertion power gain equalities stated in

(c) of Theorem 6 are compatible with the computed values.

E. FOURTH EXAMPLE

In a fourth example, we assume that

ZS1 =

(

51− 39j 7 + 16j
7 + 16j 51− 39j

)

Ω , (61)

ZS2 =

(

32 + 47j 11 + 41j
11 + 41j 32 + 47j

)

Ω , (62)

and that the DUS has an impedance matrix given by

Z =








54 + 25j 6 + 7j 20 + 13j −10− 5j
6 + 7j 54 + 25j −10− 5j 20 + 13j
20 + 13j −10− 5j 25− 25j 6 + 17j
−10− 5j 20 + 13j 6 + 17j 25− 25j









Ω .

(63)

Here, ZS1, ZS2 and Z are symmetric and have each a

positive definite hermitian part. ZS1 and ZS2 are circulant,

and Z is a 2-by-2 block matrix, the blocks of which are of

size 2 by 2 and circulant. It follows from Observation 4 that

ZPAM21 is circulant.

The maximum and minimum values defined in (a) and

(b) of Theorem 4 and Theorem 6 have been computed as

eigenvalues according to Theorem 3 and Theorem 5, and in-

dependently determined by an extremum-seeking algorithm

using (51) or (52). Both methods give exactly the same

values, shown in Table 4.

TABLE 4. Results for the fourth example.

Quantity CA CB

maximum value of the transducer power gain 0.120251 0.120251

minimum value of the transducer power gain 0.010066 0.010066

maximum value of the insertion power gain 0.215581 0.215581

minimum value of the insertion power gain 0.014556 0.014556

ZS1, ZS2 and Z being symmetric, we find that: the trans-

ducer power gain equalities stated in (c) and (d) of Theorem 4

are compatible with the computed values; and, ZS1, ZS2 and

ZPAM21 being circulant, the insertion power gain equalities

stated in (c) of Theorem 6 are compatible with the computed

values.
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FIGURE 8. A MIMO matching circuit having the structure of a multidimensional
π-network. It has n = 4 antenna ports, labeled AP1 to AP4, and m = 4 user
ports, labeled UP1 to UP4.

VII. APPLICATION TO A MIMO MATCHING CIRCUIT
The reciprocal and passive LTI DUS shown in Fig. 8

is a multiple-input-port and multiple-output-port (MIMO)

matching circuit in which port set 1 is composed of m = 4
user ports intended to be coupled to a radio transceiver, and

port set 2 is composed of n = 4 antenna ports, each of which

is intended to be connected to an antenna. This matching

circuit having the structure of a multidimensional π-network

has already been investigated [19]–[23]. It comprises 20 ad-

justable impedance devices presenting a negative reactance,

each depicted using a variable capacitor symbol in Fig. 8. It

can be adjusted to modify the impedance matrix presented by

port set 1, denoted by ZU .

We assume that the radio transceiver is such that

ZS1 = r014 , (64)

where r0 = 50Ω. We note that CA corresponds to emission,

and CB to reception.

The antennas are n = 4 side-by-side parallel dipole

antennas, each having a total length of 224.8 mm. The radius

of the array is 56.2 mm. Each antenna is lossless and has a

60 mm long lossy feeder. The antenna array is intended to

operate in the frequency band 700 MHz to 900 MHz. At the

center frequency fc = 800MHz, ZS2 is approximately given

by

ZS2 =








8.6− 8.9j 3.8 + 4.9j 1.7 + 2.2j 3.8 + 4.9j
3.8 + 4.9j 8.6− 8.9j 3.8 + 4.9j 1.7 + 2.2j
1.7 + 2.2j 3.8 + 4.9j 8.6− 8.9j 3.8 + 4.9j
3.8 + 4.9j 1.7 + 2.2j 3.8 + 4.9j 8.6− 8.9j









Ω .

(65)

At any frequency, ZS2 is symmetric and circulant, as

shown in (65) at fc, so that ZS2 is fully determined by the

FIGURE 9. Entries of ZS2 versus frequency: Re(ZS2 11) is curve A;
Im(ZS2 11) is curve B; Re(ZS2 12) is curve C; Im(ZS2 12) is curve D;
Re(ZS2 13) is curve E; and Im(ZS2 13) is curve F.

first three entries of its first row. These entries are plotted in

the frequency range 700 MHz to 900 MHz, in Fig. 9.

At any tuning frequency fT in this frequency range, the

MIMO matching circuit is intended to be such that it can be

adjusted to obtain that ZU approximates a wanted impedance

matrix ZUW , given by

ZUW = r014 . (66)

We assume that the components of the MIMO matching

circuit have the loss characteristics defined in [23, Sec. 5],

in which it is shown that an adjustment such that ZU =
ZUW exists at any tuning frequency in the frequency range

700 MHz to 900 MHz, and in which the corresponding

capacitance values of the adjustable impedance devices are

computed.

In Fig. 10 and Fig. 11, we show results relating to the

transducer power gain at the tuning frequency, as a function

of the tuning frequency, in CA and CB, respectively. These

results are the maximum transducer power gain with respect

to the possible excitations, the minimum transducer power

gain with respect to the possible excitations, and the trans-

ducer power gain for an excitation defined by

IS1 =









1
0
0
0









A inCA, or IS2 =









1
0
0
0









A inCB. (67)

The MAX and MIN curves were obtained using Theorem

3 and Observation 1, by computing the eigenvalues of N1

given by (27) in the case of Fig. 10, and the eigenvalues of

N2 given by (28) in the case of Fig. 11. We observe that, in

line with Theorem 4, the maximum transducer power gains

in CA and CB are equal (the absolute value of the relative

difference of the computed values is less than 10−14), and

the minimum transducer power gains in CA and CB are equal

(the absolute value of the relative difference of the computed

values is also less than 10−14). For an arbitrary excitation, the

Copyright © 2021 by Excem 11
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FIGURE 10. Transducer power gain at the tuning frequency in CA: the
maximum value is labeled “MAX”, the minimum value is labeled “MIN”; the
dashed curve corresponds to the excitation given by (67).

FIGURE 11. Transducer power gain at the tuning frequency in CB: the
maximum value is labeled “MAX”, the minimum value is labeled “MIN”; the
dashed curve corresponds to the excitation given by (67).

transducer power gain may lie anywhere between the MAX

and MIN curves of Fig. 10 and Fig. 11.

In Fig. 12 and Fig. 13, we show results relating to the

insertion power gain at the tuning frequency, as a function

of the tuning frequency, in CA and CB, respectively. These

results are the maximum insertion power gain with respect to

the possible excitations, the minimum insertion power gain

with respect to the possible excitations, and the insertion

power gain for an excitation defined by (67).

Here, the MAX and MIN curves were obtained using

Theorem 5 and Observation 2, by computing the eigenvalues

of N1 given by (44) in the case of Fig. 12, and the eigenvalues

of N2 given by (45) in the case of Fig. 13. We observe that

the maximum insertion power gains in CA and CB are equal

(the absolute value of the relative difference of the computed

values is less than 10−12), and the minimum insertion power

gains in CA and CB are equal (the absolute value of the

relative difference of the computed values is less than 10−14).

This is explained by Theorem 6, because the symmetry of the

problem is such that ZPAM21, ZS1 and ZS2 are circulant.

We observe that the MAX and MIN curves plotted in

Fig. 10 to Fig. 13 are continuous, in line with [11, Sec. 6.3.3].

FIGURE 12. Insertion power gain at the tuning frequency in CA: the maximum
value is labeled “MAX”, the minimum value is labeled “MIN”; the dashed curve
corresponds to the excitation given by (67).

FIGURE 13. Insertion power gain at the tuning frequency in CB: the maximum
value is labeled “MAX”, the minimum value is labeled “MIN”; the dashed curve
corresponds to the excitation given by (67).

They also look differentiable except at some frequencies. In

fact these curves need not be differentiable at a frequency

where the eigenvalues of M1 or M2, as applicable, are not

distinct (see [11, Sec. 6.3.12] and [11, Sec. 6.3.P10]).

It is possible to design an adaptive MIMO antenna tuning

system (also referred to as “automatic antenna tuner”), which

automatically adjusts the MIMO matching circuit considered

above during emission, to obtain that ZU is close to ZUW

[24]–[27]. In this context, for time-division duplex (TDD)

which uses the same frequency for emission and reception,

we can say that Fig. 10 and Fig. 12 relate to the performance

of the MIMO matching circuit during emission, versus the

operating frequency; and that Fig. 11 and Fig. 13 relate to

the performance of the MIMO matching circuit during re-

ception, versus the operating frequency. Consequently, each

MAX and MIN curve in these figures may be regarded

as a performance criterion. As regards these criteria, our

results show that the performances are the same for emission

and reception. Thus, an optimal adjustment for emission,

provided by the adaptive MIMO antenna tuning system, is

also an optimal adjustment for reception, for these criteria.

This is important from a practical standpoint.
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VIII. CONCLUSION
The reciprocal theorems presented in this article are partially

applicable to any passive LTI DUS. They are fully applicable

and relevant to a passive and reciprocal DUS in which

bidirectional signaling or power transfer takes place, such as

a subcircuit of the front-end of a MIMO radio transceiver

like the one studied in Section VII, a parallel multichannel

electrical link (interconnect), or a system comprising two

antenna arrays used to create a MIMO channel.

The reciprocal theorems provide fundamental equalities

between the extrema of the transducer power gain in CA and

CB, and between the extrema of the insertion power gain

in CA and CB when the stated conditions are met. These

theorems use a broad definition of reciprocity, which does

not assume that a reciprocal device is made of lumped circuit

elements. The reciprocal theorem on the transducer power

gain (Theorem 4) is far more general than the reciprocal

theorem on the insertion power gain (Theorem 6). It is

therefore interesting to look at the differences in the proofs,

which cause this important difference.

To establish the reciprocal theorems, we have used a

suitable parallel-augmented multiport of the DUS, for which

the impedance matrix exists and leads to simple formulas for

the transducer power gain and the insertion power gain in CA

and CB. However, using the same added multiport, we could

also have used a series-augmented multiport, for which the

admittance matrix exists and also leads to simple formulas

for the transducer power gain and the insertion power gain in

CA and CB.

APPENDIX
In the framework of the theory of lumped LTI circuits, a

reciprocal circuit is sometimes defined as a circuit which

is exclusively composed of one or more resistors, inductors,

coupled inductors, capacitors and transformers, because such

a circuit satisfies the reciprocity theorem [4, Ch. 16]. Based

on this definition, a circuit which is exclusively composed of

reciprocal circuits is obviously a reciprocal circuit.

In this paper, “reciprocity” refers to a more general def-

inition of a reciprocal device, which is limited neither to

lumped networks nor to passive networks, and only assumes

that the device satisfies the conclusion of the reciprocity

theorem. According to this definition, a reciprocal device is:

LTI, singled-valued and such that, in the Laplace domain,

all transfer admittances, transfer impedances, transfer current

ratios and transfer voltage ratios corresponding to admissible

signal pairs satisfy the relations stated in the conclusion of

the reciprocity theorem [3, Ch. 2]–[4, Ch. 16]. Based on

this definition, it is not at all obvious that a network which

is exclusively composed of reciprocal devices should be a

reciprocal device. This is why we need to prove the last

statement of Theorem 1, according to which, if the added

multiport is a reciprocal device (i.e., if YA is symmetric) and

the original multiport is a reciprocal device, then ZPAM is

symmetric.

Proof: Let us first observe that, if the original multiport

has an admittance matrix Y, this matrix is symmetric, so that

FIGURE 14. Equivalent circuit of the original multiport, for N = 2.

Y + YA is also symmetric. Thus, ZPAM = (Y + YA)
−1

is also symmetric. Here, we have obtained the wanted result

without much effort.

In what follows, we do not assume that the original mul-

tiport has an admittance matrix, and we consider Laplace

domain voltages, currents and matrices, which depend on

the Laplace variable s. As shown in Fig. 14 for N = 2,

let v1, . . . , vN be the voltages at the ports of the parallel-

augmented multiport, which are also the voltages at the

ports of the original multiport, and i1, . . . , iN be the currents

flowing in the ports of the parallel-augmented multiport,

using associated reference directions. Let î1, . . . , îN be the

currents flowing in the ports of the original multiport, using

associated reference directions. By inspection, we find that






v1
...

vN






= ZPAM







i1
...

iN






, (68)

and






î1
...

îN






+YA







v1
...

vN






=







i1
...

iN






. (69)

In (68) and (69), the vector (i1, . . . , iN )T can be any

complex vector of size N by 1, because ZPAM exists. In

contrast, the vectors (v1, . . . , vN )T and (̂i1, . . . , îN )T may

be constrained to lie in a subspace of the vector space of

the complex vectors of size N by 1. The original multi-

port being assumed to be a non-pathological and singled-

valued, it is possible to select N independent variables among

v1, . . . , vN , î1, . . . , îN , these independent variables having

different indices. The original multiport creates a mapping

from these independent variables to the other variables. With-

out loss of generality, we may assume that there exists a

nonnegative integer k such that the independent variables are

the entries v1, . . . , vk, îk+1, . . . , îN of a vector C, so that the

other variables are the entries î1, . . . , îk, vk+1, . . . , vN of a

vector D. Said mapping representing a passive LTI system,

there exists a complex matrix M of size N by N , which is

analytic in the region Re(s) > 0 and such that [3, Ch. 2]:

D = MC . (70)
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An entry of M is an admittance, a transfer admittance, an

impedance, a transfer impedance, a transfer current ratio or

a transfer voltage ratio corresponding to admissible signal

pairs. The original network satisfying the conclusion of the

reciprocity theorem, it follows that an entry Mp q of M is

such that: if p and q are both lying in {1, . . . , k}, or both

lying in {k + 1, . . . , N}, we have Mp q = Mq p; and if

p ∈ {1, . . . , k} and q ∈ {k+1, . . . , N}, or if q ∈ {1, . . . , k}
and p ∈ {k + 1, . . . , N}, then we have Mp q = −Mq p.

We now consider two excitations of the parallel-

augmented multiport. We use the superscript a to indicate the

variables corresponding to excitation a, and the superscript b
to indicate the variables corresponding to excitation b. We

may write

N
∑

p=0

vap i
b
p =

N
∑

p=0

(vap(i
b
p − îbp)) +

N
∑

p=0

(vap î
b
p) , (71)

so that we obtain

N
∑

p=0

vap i
b
p =

N
∑

p=0

(vap(i
b
p − îbp))

+

k
∑

p=0

(capd
b
p) +

N
∑

p=k+1

(dapc
b
p) . (72)

Introducing the entries YAp q of YA in (69), and the entries

of M, we get

N
∑

p=0

vap i
b
p =

N
∑

p=0

(

vap

N
∑

q=0

YAp qv
b
q

)

+
k

∑

p=0

(

cap

N
∑

q=0

Mp qc
b
q

)

+
N
∑

p=k+1

(

cbp

N
∑

q=0

Mp qc
a
q

)

. (73)

Using Mp q = −Mq p where it occurs, we obtain

N
∑

p=0

vap i
b
p =

N
∑

p=0

N
∑

q=0

(YAp qv
a
pv

b
q)

+

k
∑

p=0

k
∑

q=0

(Mp qc
a
pc

b
q) +

N
∑

p=k+1

N
∑

q=k+1

(Mp qc
b
pc

a
q ) , (74)

because

k
∑

p=0

N
∑

q=k+1

(Mp qc
a
pc

b
q) +

N
∑

p=k+1

k
∑

q=0

(Mp qc
b
pc

a
q ) = 0 . (75)

We can also write

N
∑

p=0

vbpi
a
p =

N
∑

p=0

(vbp(i
a
p − îap)) +

N
∑

p=0

(vbpî
a
p) , (76)

and obtain

N
∑

p=0

vbpi
a
p =

N
∑

p=0

N
∑

q=0

(YAp qv
b
pv

a
q )

+
k

∑

p=0

k
∑

q=0

(Mp qc
b
pc

a
q ) +

N
∑

p=k+1

N
∑

q=k+1

(Mp qc
a
pc

b
q) . (77)

Using the symmetry of YA and Mp q = Mq p where it

occurs in (74) and (77), we get

N
∑

p=0

vap i
b
p =

N
∑

p=0

vbpi
a
p . (78)

Introducing the entries ZPAM p q of ZPAM in (78), we get

N
∑

p=0

(

N
∑

q=0

ZPAM p qi
a
q

)

ibp

=

N
∑

p=0

(

N
∑

q=0

ZPAM p qi
b
q

)

iap , (79)

so that

N
∑

p=0

N
∑

q=0

ZPAM p qi
a
q i

b
p =

N
∑

p=0

N
∑

q=0

ZPAM p qi
a
pi

b
q . (80)

Exchanging the indices in the right-hand side of (80), we

get

N
∑

p=0

N
∑

q=0

ZPAM p qi
a
q i

b
p =

N
∑

p=0

N
∑

q=0

ZPAM q pi
a
q i

b
p , (81)

so that

N
∑

p=0

N
∑

q=0

(ZPAM p q − ZPAM q p) i
a
q i

b
p = 0 . (82)

Since the vector (i1, . . . , iN )T can be any complex vector

of size N by 1, it follows that (82) applies to any ia1 , . . . , i
a
N

and any ib1, . . . , i
b
N . Consequently, for any P ∈ {1, . . . , N}

and any Q ∈ {1, . . . , N}, we can choose ibP = 1 A, we can

choose ibp = 0 A for any p ∈ {1, . . . , N} such that p 6= P ,

we can choose iaQ = 1 A, and we can choose iaq = 0 A for

any q ∈ {1, . . . , N} such that q 6= Q, so that (82) becomes

ZPAM P Q = ZPAM QP . The symmetry of ZPAM in the

region Re(s) > 0 follows.

Since, for any p ∈ {1, . . . , N} and any q ∈ {1, . . . , N},

we have ZPAM p q = ZPAM q p for Re(s) > 0, it follows

from the uniqueness theorem on the Laplace transform [28,

Sec. 8.3] that ZPAM p q and ZPAM q p are Laplace transforms

of the same Laplace transformable time domain distribution.

Since, by Theorem 1, ZPAM p q and ZPAM q p exist on the

imaginary axis s = jω, we may conclude that they are equal

on this axis. Thus, ZPAM is symmetric on the imaginary axis

s = jω.
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